Lectures On The Theory Of Algebraic Numbers
Download Lectures On The Theory Of Algebraic Numbers full books in PDF, epub, and Kindle. Read online free Lectures On The Theory Of Algebraic Numbers ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : E. T. Hecke |
Publisher | : Springer Science & Business Media |
Total Pages | : 251 |
Release | : 2013-03-09 |
Genre | : Mathematics |
ISBN | : 1475740921 |
. . . if one wants to make progress in mathematics one should study the masters not the pupils. N. H. Abel Heeke was certainly one of the masters, and in fact, the study of Heeke L series and Heeke operators has permanently embedded his name in the fabric of number theory. It is a rare occurrence when a master writes a basic book, and Heeke's Lectures on the Theory of Algebraic Numbers has become a classic. To quote another master, Andre Weil: "To improve upon Heeke, in a treatment along classical lines of the theory of algebraic numbers, would be a futile and impossible task. " We have tried to remain as close as possible to the original text in pre serving Heeke's rich, informal style of exposition. In a very few instances we have substituted modern terminology for Heeke's, e. g. , "torsion free group" for "pure group. " One problem for a student is the lack of exercises in the book. However, given the large number of texts available in algebraic number theory, this is not a serious drawback. In particular we recommend Number Fields by D. A. Marcus (Springer-Verlag) as a particularly rich source. We would like to thank James M. Vaughn Jr. and the Vaughn Foundation Fund for their encouragement and generous support of Jay R. Goldman without which this translation would never have appeared. Minneapolis George U. Brauer July 1981 Jay R.
Author | : Peter Gustav Lejeune Dirichlet |
Publisher | : American Mathematical Soc. |
Total Pages | : 297 |
Release | : 1999 |
Genre | : Mathematics |
ISBN | : 0821820176 |
Lectures on Number Theory is the first of its kind on the subject matter. It covers most of the topics that are standard in a modern first course on number theory, but also includes Dirichlet's famous results on class numbers and primes in arithmetic progressions.
Author | : Paul Pollack |
Publisher | : American Mathematical Soc. |
Total Pages | : 329 |
Release | : 2017-08-01 |
Genre | : Mathematics |
ISBN | : 1470436531 |
Gauss famously referred to mathematics as the “queen of the sciences” and to number theory as the “queen of mathematics”. This book is an introduction to algebraic number theory, meaning the study of arithmetic in finite extensions of the rational number field Q . Originating in the work of Gauss, the foundations of modern algebraic number theory are due to Dirichlet, Dedekind, Kronecker, Kummer, and others. This book lays out basic results, including the three “fundamental theorems”: unique factorization of ideals, finiteness of the class number, and Dirichlet's unit theorem. While these theorems are by now quite classical, both the text and the exercises allude frequently to more recent developments. In addition to traversing the main highways, the book reveals some remarkable vistas by exploring scenic side roads. Several topics appear that are not present in the usual introductory texts. One example is the inclusion of an extensive discussion of the theory of elasticity, which provides a precise way of measuring the failure of unique factorization. The book is based on the author's notes from a course delivered at the University of Georgia; pains have been taken to preserve the conversational style of the original lectures.
Author | : Pierre Samuel |
Publisher | : Dover Books on Mathematics |
Total Pages | : 0 |
Release | : 2008 |
Genre | : Mathematics |
ISBN | : 9780486466668 |
Algebraic number theory introduces students to new algebraic notions as well as related concepts: groups, rings, fields, ideals, quotient rings, and quotient fields. This text covers the basics, from divisibility theory in principal ideal domains to the unit theorem, finiteness of the class number, and Hilbert ramification theory. 1970 edition.
Author | : Michal Krizek |
Publisher | : Springer Science & Business Media |
Total Pages | : 280 |
Release | : 2013-03-14 |
Genre | : Mathematics |
ISBN | : 0387218505 |
The pioneering work of Pierre de Fermat has attracted the attention of mathematicians for over 350 years. This book provides an overview of the many properties of Fermat numbers and demonstrates their applications in areas such as number theory, probability theory, geometry, and signal processing. It is an ideal introduction to the basic mathematical ideas and algebraic methods connected with the Fermat numbers.
Author | : Takashi Ono |
Publisher | : Springer Science & Business Media |
Total Pages | : 233 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 146130573X |
This book is a translation of my book Suron Josetsu (An Introduction to Number Theory), Second Edition, published by Shokabo, Tokyo, in 1988. The translation is faithful to the original globally but, taking advantage of my being the translator of my own book, I felt completely free to reform or deform the original locally everywhere. When I sent T. Tamagawa a copy of the First Edition of the original work two years ago, he immediately pointed out that I had skipped the discussion of the class numbers of real quadratic fields in terms of continued fractions and (in a letter dated 2/15/87) sketched his idea of treating continued fractions without writing explicitly continued fractions, an approach he had first presented in his number theory lectures at Yale some years ago. Although I did not follow his approach exactly, I added to this translation a section (Section 4. 9), which nevertheless fills the gap pointed out by Tamagawa. With this addition, the present book covers at least T. Takagi's Shoto Seisuron Kogi (Lectures on Elementary Number Theory), First Edition (Kyoritsu, 1931), which, in turn, covered at least Dirichlet's Vorlesungen. It is customary to assume basic concepts of algebra (up to, say, Galois theory) in writing a textbook of algebraic number theory. But I feel a little strange if I assume Galois theory and prove Gauss quadratic reciprocity.
Author | : M.E. Pohst |
Publisher | : Springer Science & Business Media |
Total Pages | : 108 |
Release | : 1993-09 |
Genre | : Gardening |
ISBN | : 9783764329136 |
Computational algebraic number theory has been attracting broad interest in the last few years due to its potential applications in coding theory and cryptography. For this reason, the Deutsche Mathematiker-Vereinigung initiated an introductory graduate seminar on this topic in Dusseldorf. The lectures given there by the author served as the basis for this book which allows fast access to the state of the art in this area. Special emphasis has been placed on practical algorithms - all developed in the last five years - for the computation of integral bases, the unit group and the class group of arbitrary algebraic number fields. The workshops organized by the Gesselschaft fur mathematische Forschung in cooperation with the Deutsche Mathematiker-Vereinigung (German Mathematics Society) are intended to help, in particular, students and younger mathematicians, to obtain an introduction to fields of current research. Through the means of these well-organized seminars, scientists from other fields can also be introduced to new mathematical ideas. The publication of these workshops in the series DMV SEMINAR will make the material available to an even larger audience.
Author | : Robert B. Ash |
Publisher | : Courier Corporation |
Total Pages | : 130 |
Release | : 2010-01-01 |
Genre | : Mathematics |
ISBN | : 0486477541 |
This text for a graduate-level course covers the general theory of factorization of ideals in Dedekind domains as well as the number field case. It illustrates the use of Kummer's theorem, proofs of the Dirichlet unit theorem, and Minkowski bounds on element and ideal norms. 2003 edition.
Author | : Vladimir Platonov |
Publisher | : Academic Press |
Total Pages | : 629 |
Release | : 1993-12-07 |
Genre | : Mathematics |
ISBN | : 0080874592 |
This milestone work on the arithmetic theory of linear algebraic groups is now available in English for the first time. Algebraic Groups and Number Theory provides the first systematic exposition in mathematical literature of the junction of group theory, algebraic geometry, and number theory. The exposition of the topic is built on a synthesis of methods from algebraic geometry, number theory, analysis, and topology, and the result is a systematic overview ofalmost all of the major results of the arithmetic theory of algebraic groups obtained to date.
Author | : Jürgen Neukirch |
Publisher | : Springer Science & Business Media |
Total Pages | : 195 |
Release | : 2013-04-08 |
Genre | : Mathematics |
ISBN | : 3642354378 |
The present manuscript is an improved edition of a text that first appeared under the same title in Bonner Mathematische Schriften, no.26, and originated from a series of lectures given by the author in 1965/66 in Wolfgang Krull's seminar in Bonn. Its main goal is to provide the reader, acquainted with the basics of algebraic number theory, a quick and immediate access to class field theory. This script consists of three parts, the first of which discusses the cohomology of finite groups. The second part discusses local class field theory, and the third part concerns the class field theory of finite algebraic number fields.