Lecture Notes on Principles of Plasma Processing

Lecture Notes on Principles of Plasma Processing
Author: Francis F. Chen
Publisher: Springer Science & Business Media
Total Pages: 213
Release: 2012-12-06
Genre: Science
ISBN: 1461501814

Plasma processing of semiconductors is an interdisciplinary field requiring knowledge of both plasma physics and chemical engineering. The two authors are experts in each of these fields, and their collaboration results in the merging of these fields with a common terminology. Basic plasma concepts are introduced painlessly to those who have studied undergraduate electromagnetics but have had no previous exposure to plasmas. Unnecessarily detailed derivations are omitted; yet the reader is led to understand in some depth those concepts, such as the structure of sheaths, that are important in the design and operation of plasma processing reactors. Physicists not accustomed to low-temperature plasmas are introduced to chemical kinetics, surface science, and molecular spectroscopy. The material has been condensed to suit a nine-week graduate course, but it is sufficient to bring the reader up to date on current problems such as copper interconnects, low-k and high-k dielectrics, and oxide damage. Students will appreciate the web-style layout with ample color illustrations opposite the text, with ample room for notes. This short book is ideal for new workers in the semiconductor industry who want to be brought up to speed with minimum effort. It is also suitable for Chemical Engineering students studying plasma processing of materials; Engineers, physicists, and technicians entering the semiconductor industry who want a quick overview of the use of plasmas in the industry.

Introduction to Plasma Physics and Controlled Fusion

Introduction to Plasma Physics and Controlled Fusion
Author: Francis F. Chen
Publisher: Springer Science & Business Media
Total Pages: 427
Release: 2013-03-09
Genre: Science
ISBN: 1475755953

TO THE SECOND EDITION In the nine years since this book was first written, rapid progress has been made scientifically in nuclear fusion, space physics, and nonlinear plasma theory. At the same time, the energy shortage on the one hand and the exploration of Jupiter and Saturn on the other have increased the national awareness of the important applications of plasma physics to energy production and to the understanding of our space environment. In magnetic confinement fusion, this period has seen the attainment 13 of a Lawson number nTE of 2 x 10 cm -3 sec in the Alcator tokamaks at MIT; neutral-beam heating of the PL T tokamak at Princeton to KTi = 6. 5 keV; increase of average ß to 3%-5% in tokamaks at Oak Ridge and General Atomic; and the stabilization of mirror-confined plasmas at Livermore, together with injection of ion current to near field-reversal conditions in the 2XIIß device. Invention of the tandem mirror has given magnetic confinement a new and exciting dimension. New ideas have emerged, such as the compact torus, surface-field devices, and the EßT mirror-torus hybrid, and some old ideas, such as the stellarator and the reversed-field pinch, have been revived. Radiofrequency heat ing has become a new star with its promise of dc current drive. Perhaps most importantly, great progress has been made in the understanding of the MHD behavior of toroidal plasmas: tearing modes, magnetic Vll Vlll islands, and disruptions.

Applications of Plasma Technologies to Material Processing

Applications of Plasma Technologies to Material Processing
Author: Giorgio Speranza
Publisher: CRC Press
Total Pages: 129
Release: 2019-04-10
Genre: Science
ISBN: 0429555202

This book provides a survey of the latest research and developments in plasma technology. In an easy and comprehensive manner, it explores what plasma is and the technologies utilized to produce plasma. It then investigates the main applications and their benefits. Different from other books on the topic that focus on specific aspects of plasma technology, the intention is to provide an introduction to all aspects related to plasma technologies. This book will be an ideal resource for graduate students studying plasma technologies, in addition to researchers in physics, engineering, and materials science. Features Accessible and easy to understand Provides simple yet exhaustive explanations of the foundations Explores the latest technologies and is filled with practical applications and case studies

Plasma Technology for Hyperfunctional Surfaces

Plasma Technology for Hyperfunctional Surfaces
Author: Hubert Rauscher
Publisher: John Wiley & Sons
Total Pages: 428
Release: 2010-04-16
Genre: Technology & Engineering
ISBN: 9783527630462

Based on a project backed by the European Union, this is a must-have resource for researchers in industry and academia concerned with application-oriented plasma technology research. Clearly divided in three sections, the first part is dedicated to the fundamentals of plasma and offers information about scientific and theoretical plasma topics, plasma production, surface treatment process and characterization. The second section focuses on technological aspects and plasma process applications in textile, food packaging and biomedical sectors, while the final part is devoted to concerns about the environmental sustainability of plasma processes.

Principles of Plasma Physics for Engineers and Scientists

Principles of Plasma Physics for Engineers and Scientists
Author: Umran S. Inan
Publisher: Cambridge University Press
Total Pages: 285
Release: 2010-12-02
Genre: Science
ISBN: 1139492241

This unified introduction provides the tools and techniques needed to analyze plasmas and connects plasma phenomena to other fields of study. Combining mathematical rigor with qualitative explanations, and linking theory to practice with example problems, this is a perfect textbook for senior undergraduate and graduate students taking one-semester introductory plasma physics courses. For the first time, material is presented in the context of unifying principles, illustrated using organizational charts, and structured in a successive progression from single particle motion, to kinetic theory and average values, through to collective phenomena of waves in plasma. This provides students with a stronger understanding of the topics covered, their interconnections, and when different types of plasma models are applicable. Furthermore, mathematical derivations are rigorous, yet concise, so physical understanding is not lost in lengthy mathematical treatments. Worked examples illustrate practical applications of theory and students can test their new knowledge with 90 end-of-chapter problems.

Microwave Plasma Sources and Methods in Processing Technology

Microwave Plasma Sources and Methods in Processing Technology
Author: Hana Barankova
Publisher: John Wiley & Sons
Total Pages: 208
Release: 2022-01-31
Genre: Technology & Engineering
ISBN: 1119826896

A practical introduction to microwave plasma for processing applications at a variety of pressures In Microwave Plasma Sources and Methods in Processing Technology, the authors deliver a comprehensive introduction to microwaves and microwave-generated plasmas. Ideal for anyone interested in non-thermal gas discharge plasmas and their applications, the book includes detailed descriptions, explanations, and practical guidance for the study and use of microwave power, microwave components, plasma, and plasma generation. This reference includes over 130 full-color diagrams to illustrate the concepts discussed within. The distinguished authors discuss the plasmas generated at different levels of power, as well as their applications at reduced, atmospheric and higher pressures. They also describe plasmas inside liquids and plasma interactions with combustion flames. Microwave Plasma Sources and Methods in Processing Technology concludes with an incisive exploration of new trends in the study and application of microwave discharges, offering promising new areas of study. The book also includes: • A thorough introduction to the basic principles of microwave techniques and power systems, including a history of the technology, microwave generators, waveguides, and wave propagation • A comprehensive exploration of the fundamentals of the physics of gas discharge plasmas, including plasma generation, Townsend coefficients, and the Paschen curve • Practical discussions of the interaction between plasmas and solid surfaces and gases, including PVD, PE CVD, oxidation, sputtering, evaporation, dry etching, surface activation, and cleaning • In-depth examinations of microwave plasma systems for plasma processing at varied parameters Perfect for researchers and engineers in the microwave community, as well as those who work with plasma applications, Microwave Plasma Sources and Methods in Processing Technology will also earn a place in the libraries of graduate and PhD students studying engineering physics, microwave engineering, and plasmas.

Principles of Vapor Deposition of Thin Films

Principles of Vapor Deposition of Thin Films
Author: Professor K.S. K.S Sree Harsha
Publisher: Elsevier
Total Pages: 1173
Release: 2005-12-16
Genre: Technology & Engineering
ISBN: 0080480314

The goal of producing devices that are smaller, faster, more functional, reproducible, reliable and economical has given thin film processing a unique role in technology.Principles of Vapor Deposition of Thin Films brings in to one place a diverse amount of scientific background that is considered essential to become knowledgeable in thin film depostition techniques. Its ultimate goal as a reference is to provide the foundation upon which thin film science and technological innovation are possible.* Offers detailed derivation of important formulae.* Thoroughly covers the basic principles of materials science that are important to any thin film preparation.* Careful attention to terminologies, concepts and definitions, as well as abundance of illustrations offer clear support for the text.

Advanced Concepts and Architectures for Plasma-Enabled Material Processing

Advanced Concepts and Architectures for Plasma-Enabled Material Processing
Author: Oleg O. Baranov
Publisher: Springer Nature
Total Pages: 82
Release: 2022-05-31
Genre: Technology & Engineering
ISBN: 3031020359

Plasma-based techniques are widely and successfully used across the field of materials processing, advanced nanosynthesis, and nanofabrication. The diversity of currently available processing architectures based on or enhanced by the use of plasmas is vast, and one can easily get lost in the opportunities presented by each of these configurations. This mini-book provides a concise outline of the most important concepts and architectures in plasma-assisted processing of materials, helping the reader navigate through the fundamentals of plasma system selection and optimization. Architectures discussed in this book range from the relatively simple, user-friendly types of plasmas produced using direct current, radio-frequency, microwave, and arc systems, to more sophisticated advanced systems based on incorporating and external substrate architectures, and complex control mechanisms of configured magnetic fields and distributed plasma sources.

Plasma Etching Processes for CMOS Devices Realization

Plasma Etching Processes for CMOS Devices Realization
Author: Nicolas Posseme
Publisher: Elsevier
Total Pages: 138
Release: 2017-01-25
Genre: Technology & Engineering
ISBN: 0081011962

Plasma etching has long enabled the perpetuation of Moore's Law. Today, etch compensation helps to create devices that are smaller than 20 nm. But, with the constant downscaling in device dimensions and the emergence of complex 3D structures (like FinFet, Nanowire and stacked nanowire at longer term) and sub 20 nm devices, plasma etching requirements have become more and more stringent. Now more than ever, plasma etch technology is used to push the limits of semiconductor device fabrication into the nanoelectronics age. This will require improvement in plasma technology (plasma sources, chamber design, etc.), new chemistries (etch gases, flows, interactions with substrates, etc.) as well as a compatibility with new patterning techniques such as multiple patterning, EUV lithography, Direct Self Assembly, ebeam lithography or nanoimprint lithography. This book presents these etch challenges and associated solutions encountered throughout the years for transistor realization. - Helps readers discover the master technology used to pattern complex structures involving various materials - Explores the capabilities of cold plasmas to generate well controlled etched profiles and high etch selectivities between materials - Teaches users how etch compensation helps to create devices that are smaller than 20 nm

Non-Thermal Plasma Technology for Polymeric Materials

Non-Thermal Plasma Technology for Polymeric Materials
Author: Sabu Thomas
Publisher: Elsevier
Total Pages: 496
Release: 2018-10-08
Genre: Technology & Engineering
ISBN: 0128131535

Non-Thermal Plasma Technology for Polymeric Materials: Applications in Composites, Nanostructured Materials and Biomedical Fields provides both an introduction and practical guide to plasma synthesis, modification and processing of polymers, their composites, nancomposites, blends, IPNs and gels. It examines the current state-of-the-art and new challenges in the field, including the use of plasma treatment to enhance adhesion, characterization techniques, and the environmental aspects of the process. Particular attention is paid to the effects on the final properties of composites and the characterization of fiber/polymer surface interactions. This book helps demystify the process of plasma polymerization, providing a thorough grounding in the fundamentals of plasma technology as they relate to polymers. It is ideal for materials scientists, polymer chemists, and engineers, acting as a guide to further research into new applications of this technology in the real world. - Enables materials scientists and engineers to deploy plasma technology for surface treatment, characterization and analysis of polymeric materials - Reviews the state-of-the-art in plasma technology for polymer synthesis and processing - Presents detailed coverage of the most advanced applications for plasma polymerization, particularly in medicine and biomedical engineering, areas such as implants, biosensors and tissue engineering