Lectures on the Geometry of Numbers

Lectures on the Geometry of Numbers
Author: Carl Ludwig Siegel
Publisher: Springer Science & Business Media
Total Pages: 168
Release: 2013-03-09
Genre: Mathematics
ISBN: 366208287X

Carl Ludwig Siegel gave a course of lectures on the Geometry of Numbers at New York University during the academic year 1945-46, when there were hardly any books on the subject other than Minkowski's original one. This volume stems from Siegel's requirements of accuracy in detail, both in the text and in the illustrations, but involving no changes in the structure and style of the lectures as originally delivered. This book is an enticing introduction to Minkowski's great work. It also reveals the workings of a remarkable mind, such as Siegel's with its precision and power and aesthetic charm. It is of interest to the aspiring as well as the established mathematician, with its unique blend of arithmetic, algebra, geometry, and analysis, and its easy readability.

Groups and Geometry

Groups and Geometry
Author: Roger C. Lyndon
Publisher: Cambridge University Press
Total Pages: 231
Release: 1985-03-14
Genre: Mathematics
ISBN: 0521316944

This 1985 book is an introduction to certain central ideas in group theory and geometry. Professor Lyndon emphasises and exploits the well-known connections between the two subjects and leads the reader to the frontiers of current research at the time of publication.

Differential Geometry in the Large

Differential Geometry in the Large
Author: Owen Dearricott
Publisher: Cambridge University Press
Total Pages: 401
Release: 2020-10-22
Genre: Mathematics
ISBN: 1108812813

From Ricci flow to GIT, physics to curvature bounds, Sasaki geometry to almost formality. This is differential geometry at large.

Lectures on Symplectic Geometry

Lectures on Symplectic Geometry
Author: Ana Cannas da Silva
Publisher: Springer
Total Pages: 240
Release: 2004-10-27
Genre: Mathematics
ISBN: 354045330X

The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.

17 Lectures on Fermat Numbers

17 Lectures on Fermat Numbers
Author: Michal Krizek
Publisher: Springer Science & Business Media
Total Pages: 280
Release: 2013-03-14
Genre: Mathematics
ISBN: 0387218505

The pioneering work of Pierre de Fermat has attracted the attention of mathematicians for over 350 years. This book provides an overview of the many properties of Fermat numbers and demonstrates their applications in areas such as number theory, probability theory, geometry, and signal processing. It is an ideal introduction to the basic mathematical ideas and algebraic methods connected with the Fermat numbers.

The Geometry of Jet Bundles

The Geometry of Jet Bundles
Author: D. J. Saunders
Publisher: Cambridge University Press
Total Pages: 307
Release: 1989-03-09
Genre: Mathematics
ISBN: 0521369487

The purpose of this book is to , particularly those associated with the calculus of variations, in a modern geometric way.

Lectures on Formal and Rigid Geometry

Lectures on Formal and Rigid Geometry
Author: Siegfried Bosch
Publisher: Springer
Total Pages: 255
Release: 2014-08-22
Genre: Mathematics
ISBN: 3319044176

The aim of this work is to offer a concise and self-contained 'lecture-style' introduction to the theory of classical rigid geometry established by John Tate, together with the formal algebraic geometry approach launched by Michel Raynaud. These Lectures are now viewed commonly as an ideal means of learning advanced rigid geometry, regardless of the reader's level of background. Despite its parsimonious style, the presentation illustrates a number of key facts even more extensively than any other previous work. This Lecture Notes Volume is a revised and slightly expanded version of a preprint that appeared in 2005 at the University of Münster's Collaborative Research Center "Geometrical Structures in Mathematics".

Virtual Topology and Functor Geometry

Virtual Topology and Functor Geometry
Author: Fred Van Oystaeyen
Publisher: CRC Press
Total Pages: 170
Release: 2007-11-15
Genre: Mathematics
ISBN: 1420060570

Intrinsically noncommutative spaces today are considered from the perspective of several branches of modern physics, including quantum gravity, string theory, and statistical physics. From this point of view, it is ideal to devise a concept of space and its geometry that is fundamentally noncommutative. Providing a clear introduction to noncommutat

Lectures on Invariant Theory

Lectures on Invariant Theory
Author: Igor Dolgachev
Publisher: Cambridge University Press
Total Pages: 244
Release: 2003-08-07
Genre: Mathematics
ISBN: 9780521525480

The primary goal of this 2003 book is to give a brief introduction to the main ideas of algebraic and geometric invariant theory. It assumes only a minimal background in algebraic geometry, algebra and representation theory. Topics covered include the symbolic method for computation of invariants on the space of homogeneous forms, the problem of finite-generatedness of the algebra of invariants, the theory of covariants and constructions of categorical and geometric quotients. Throughout, the emphasis is on concrete examples which originate in classical algebraic geometry. Based on lectures given at University of Michigan, Harvard University and Seoul National University, the book is written in an accessible style and contains many examples and exercises. A novel feature of the book is a discussion of possible linearizations of actions and the variation of quotients under the change of linearization. Also includes the construction of toric varieties as torus quotients of affine spaces.