Visible Learning for Science, Grades K-12

Visible Learning for Science, Grades K-12
Author: John Almarode
Publisher: Corwin Press
Total Pages: 131
Release: 2018-02-15
Genre: Education
ISBN: 1506394191

In the best science classrooms, teachers see learning through the eyes of their students, and students view themselves as explorers. But with so many instructional approaches to choose from—inquiry, laboratory, project-based learning, discovery learning—which is most effective for student success? In Visible Learning for Science, the authors reveal that it’s not which strategy, but when, and plot a vital K-12 framework for choosing the right approach at the right time, depending on where students are within the three phases of learning: surface, deep, and transfer. Synthesizing state-of-the-art science instruction and assessment with over fifteen years of John Hattie’s cornerstone educational research, this framework for maximum learning spans the range of topics in the life and physical sciences. Employing classroom examples from all grade levels, the authors empower teachers to plan, develop, and implement high-impact instruction for each phase of the learning cycle: Surface learning: when, through precise approaches, students explore science concepts and skills that give way to a deeper exploration of scientific inquiry. Deep learning: when students engage with data and evidence to uncover relationships between concepts—students think metacognitively, and use knowledge to plan, investigate, and articulate generalizations about scientific connections. Transfer learning: when students apply knowledge of scientific principles, processes, and relationships to novel contexts, and are able to discern and innovate to solve complex problems. Visible Learning for Science opens the door to maximum-impact science teaching, so that students demonstrate more than a year’s worth of learning for a year spent in school.

Learning Science by Doing Science

Learning Science by Doing Science
Author: Alan Colburn
Publisher: Corwin Press
Total Pages: 209
Release: 2016-12-22
Genre: Education
ISBN: 1506387403

Time-tested activities to teach the key ideas of science—and turn students into scientists! This witty book adapts classic investigations to help students in grades 3 through 8 truly think and act like scientists. Chapter by chapter, this accessible primer illustrates a “big idea” about the nature of science and offers clear links to the Next Generation Science Standards and its Science and Engineering Practices. You’ll also find: A reader-friendly overview of the NGSS Guidance on adapting the activities to your grade level, including communicating instructions, facilitating discussions, and managing safety concerns Case studies of working scientists to highlight specifics about the science and engineering practices

Learning Science

Learning Science
Author: Barbara Schneider
Publisher: Yale University Press
Total Pages: 201
Release: 2020-02-11
Genre: Education
ISBN: 0300252730

An innovative, internationally developed system to help advance science learning and instruction for high school students This book tells the story of a $3.6 million research project funded by the National Science Foundation aimed at increasing scientific literacy and addressing global concerns of declining science engagement. Studying dozens of classrooms across the United States and Finland, this international team combines large-scale studies with intensive interviews from teachers and students to examine how to transform science education. Written for teachers, parents, policymakers, and researchers, this book offers solutions for matching science learning and instruction with newly recommended twenty-first-century standards.

Ambitious Science Teaching

Ambitious Science Teaching
Author: Mark Windschitl
Publisher: Harvard Education Press
Total Pages: 455
Release: 2020-08-05
Genre: Education
ISBN: 1682531643

2018 Outstanding Academic Title, Choice Ambitious Science Teaching outlines a powerful framework for science teaching to ensure that instruction is rigorous and equitable for students from all backgrounds. The practices presented in the book are being used in schools and districts that seek to improve science teaching at scale, and a wide range of science subjects and grade levels are represented. The book is organized around four sets of core teaching practices: planning for engagement with big ideas; eliciting student thinking; supporting changes in students’ thinking; and drawing together evidence-based explanations. Discussion of each practice includes tools and routines that teachers can use to support students’ participation, transcripts of actual student-teacher dialogue and descriptions of teachers’ thinking as it unfolds, and examples of student work. The book also provides explicit guidance for “opportunity to learn” strategies that can help scaffold the participation of diverse students. Since the success of these practices depends so heavily on discourse among students, Ambitious Science Teaching includes chapters on productive classroom talk. Science-specific skills such as modeling and scientific argument are also covered. Drawing on the emerging research on core teaching practices and their extensive work with preservice and in-service teachers, Ambitious Science Teaching presents a coherent and aligned set of resources for educators striving to meet the considerable challenges that have been set for them.

Learning Science: Theory, Research, and Practice

Learning Science: Theory, Research, and Practice
Author: Robert S. Feldman
Publisher: McGraw Hill Professional
Total Pages: 385
Release: 2019-08-09
Genre: Education
ISBN: 1260458008

Cutting-edge insights and perspectives from today’s leading minds in the field of learning science The discipline of learning science is fast becoming a primary approach for answering one of the most important questions of our time: How do we most effectively educate students to reach their full potential? Spanning the disciplines of psychology, data science, cognitive science, sociology, and anthropology, Learning Science offers solutions to our most urgent educational challenges. Composed of insightful essays from top figures in their respective fields, the book also shows how a thorough understanding of this critical discipline all but ensures better decision making when it comes to education. Chapters include: • Exploring Student Interactions in Collaborative Problem-Solving with a Multimodal Approach • Learning Science Research Through a Social Science Lens • Semantic Representation & Analysis and its Application in Conversation-based Intelligent Tutoring Systems • Advancing the Relationship Between Learning Sciences and Teaching Practice • Advancing the State of Online Learning: Stay Integrated, Stay Accessible, Stay Curious • Designing Immersive Authentic Simulations that Enhance Motivation and Learning • High School OER STEM Lessons Leading to Deep Learning, For Students and Teachers • How to Increase Learning While Not Decreasing the Fun in Educational Games Whether you’re creating curricula, developing policies, or educating students in a classroom setting, Learning Science delivers the knowledge, insight, and inspiration you need to do your part to ensure every student meets his or her full potential.

Taking Science to School

Taking Science to School
Author: National Research Council
Publisher: National Academies Press
Total Pages: 404
Release: 2007-04-16
Genre: Education
ISBN: 0309133831

What is science for a child? How do children learn about science and how to do science? Drawing on a vast array of work from neuroscience to classroom observation, Taking Science to School provides a comprehensive picture of what we know about teaching and learning science from kindergarten through eighth grade. By looking at a broad range of questions, this book provides a basic foundation for guiding science teaching and supporting students in their learning. Taking Science to School answers such questions as: When do children begin to learn about science? Are there critical stages in a child's development of such scientific concepts as mass or animate objects? What role does nonschool learning play in children's knowledge of science? How can science education capitalize on children's natural curiosity? What are the best tasks for books, lectures, and hands-on learning? How can teachers be taught to teach science? The book also provides a detailed examination of how we know what we know about children's learning of scienceâ€"about the role of research and evidence. This book will be an essential resource for everyone involved in K-8 science educationâ€"teachers, principals, boards of education, teacher education providers and accreditors, education researchers, federal education agencies, and state and federal policy makers. It will also be a useful guide for parents and others interested in how children learn.

Science Teachers' Learning

Science Teachers' Learning
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
Total Pages: 257
Release: 2016-01-15
Genre: Education
ISBN: 0309380189

Currently, many states are adopting the Next Generation Science Standards (NGSS) or are revising their own state standards in ways that reflect the NGSS. For students and schools, the implementation of any science standards rests with teachers. For those teachers, an evolving understanding about how best to teach science represents a significant transition in the way science is currently taught in most classrooms and it will require most science teachers to change how they teach. That change will require learning opportunities for teachers that reinforce and expand their knowledge of the major ideas and concepts in science, their familiarity with a range of instructional strategies, and the skills to implement those strategies in the classroom. Providing these kinds of learning opportunities in turn will require profound changes to current approaches to supporting teachers' learning across their careers, from their initial training to continuing professional development. A teacher's capability to improve students' scientific understanding is heavily influenced by the school and district in which they work, the community in which the school is located, and the larger professional communities to which they belong. Science Teachers' Learning provides guidance for schools and districts on how best to support teachers' learning and how to implement successful programs for professional development. This report makes actionable recommendations for science teachers' learning that take a broad view of what is known about science education, how and when teachers learn, and education policies that directly and indirectly shape what teachers are able to learn and teach. The challenge of developing the expertise teachers need to implement the NGSS presents an opportunity to rethink professional learning for science teachers. Science Teachers' Learning will be a valuable resource for classrooms, departments, schools, districts, and professional organizations as they move to new ways to teach science.

Modelling Learners and Learning in Science Education

Modelling Learners and Learning in Science Education
Author: Keith S. Taber
Publisher: Springer Science & Business Media
Total Pages: 371
Release: 2013-12-11
Genre: Science
ISBN: 9400776489

This book sets out the necessary processes and challenges involved in modeling student thinking, understanding and learning. The chapters look at the centrality of models for knowledge claims in science education and explore the modeling of mental processes, knowledge, cognitive development and conceptual learning. The conclusion outlines significant implications for science teachers and those researching in this field. This highly useful work provides models of scientific thinking from different field and analyses the processes by which we can arrive at claims about the minds of others. The author highlights the logical impossibility of ever knowing for sure what someone else knows, understands or thinks, and makes the case that researchers in science education need to be much more explicit about the extent to which research onto learners’ ideas in science is necessarily a process of developing models. Through this book we learn that research reports should acknowledge the role of modeling and avoid making claims that are much less tentative than is justified as this can lead to misleading and sometimes contrary findings in the literature. In everyday life we commonly take it for granted that finding out what another knows or thinks is a relatively trivial or straightforward process. We come to take the ‘mental register’ (the way we talk about the ‘contents’ of minds) for granted and so teachers and researchers may readily underestimate the challenges involved in their work.

A Framework for K-12 Science Education

A Framework for K-12 Science Education
Author: National Research Council
Publisher: National Academies Press
Total Pages: 400
Release: 2012-02-28
Genre: Education
ISBN: 0309214459

Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.

The Science of Learning

The Science of Learning
Author: Edward Watson
Publisher: Routledge
Total Pages: 189
Release: 2019-04-11
Genre: Education
ISBN: 0429867034

Supporting teachers in the quest to help students learn as effectively and efficiently as possible, The Science of Learning translates 77 of the most important and influential studies on the topic of learning into accessible and easily digestible overviews. Demystifying key concepts and translating research into practical advice for the classroom, this unique resource will increase teachers’ understanding of crucial psychological research so they can help students improve how they think, feel and behave in school. From large to- small-scale studies, from the quirky to the iconic, The Science of Learning breaks down complicated research to provide teachers with the need-to-know facts and implications of each study. Each overview combines graphics and text, asks key questions, describes related research and considers implications for practice. Highly accessible, each overview is attributed to one of seven key categories: Memory: increasing how much students remember Mindset, motivation and resilience: improving persistence, effort and attitude Self-regulation and metacognition: helping students to think clearly and consistently Student behaviours: encouraging positive student habits and processes Teacher attitudes, expectations and behaviours: adopting positive classroom practices Parents: how parents’ choices and behaviours impact their childrens’ learning Thinking biases: avoiding faulty thinking habits that get in the way of learning A hugely accessible resource, this unique book will support, inspire and inform teaching staff, parents and students, and those involved in leadership and CPD.