Sphere Packings, Lattices and Groups

Sphere Packings, Lattices and Groups
Author: J.H. Conway
Publisher: Springer Science & Business Media
Total Pages: 724
Release: 2013-03-09
Genre: Mathematics
ISBN: 1475722494

The second edition of this timely, definitive, and popular book continues to pursue the question: what is the most efficient way to pack a large number of equal spheres in n-dimensional Euclidean space? The authors also continue to examine related problems such as the kissing number problem, the covering problem, the quantizing problem, and the classification of lattices and quadratic forms. Like the first edition, the second edition describes the applications of these questions to other areas of mathematics and science such as number theory, coding theory, group theory, analog-to-digital conversion and data compression, n-dimensional crystallography, and dual theory and superstring theory in physics. Results as of 1992 have been added to the text, and the extensive bibliography - itself a contribution to the field - is supplemented with approximately 450 new entries.

Perfect Lattices in Euclidean Spaces

Perfect Lattices in Euclidean Spaces
Author: Jacques Martinet
Publisher: Springer Science & Business Media
Total Pages: 535
Release: 2013-03-09
Genre: Mathematics
ISBN: 3662051672

Lattices are discrete subgroups of maximal rank in a Euclidean space. To each such geometrical object, we can attach a canonical sphere packing which, assuming some regularity, has a density. The question of estimating the highest possible density of a sphere packing in a given dimension is a fascinating and difficult problem: the answer is known only up to dimension 3. This book thus discusses a beautiful and central problem in mathematics, which involves geometry, number theory, coding theory and group theory, centering on the study of extreme lattices, i.e. those on which the density attains a local maximum, and on the so-called perfection property. Written by a leader in the field, it is closely related to, though disjoint in content from, the classic book by J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, published in the same series as vol. 290. Every chapter except the first and the last contains numerous exercises. For simplicity those chapters involving heavy computational methods contain only few exercises. It includes appendices on Semi-Simple Algebras and Quaternions and Strongly Perfect Lattices.

Sphere Packings, Lattices and Groups

Sphere Packings, Lattices and Groups
Author: John Conway
Publisher: Springer Science & Business Media
Total Pages: 778
Release: 2013-06-29
Genre: Mathematics
ISBN: 1475765681

The third edition of this definitive and popular book continues to pursue the question: what is the most efficient way to pack a large number of equal spheres in n-dimensional Euclidean space? The authors also examine such related issues as the kissing number problem, the covering problem, the quantizing problem, and the classification of lattices and quadratic forms. There is also a description of the applications of these questions to other areas of mathematics and science such as number theory, coding theory, group theory, analogue-to-digital conversion and data compression, n-dimensional crystallography, dual theory and superstring theory in physics. New and of special interest is a report on some recent developments in the field, and an updated and enlarged supplementary bibliography with over 800 items.

Dense Sphere Packings

Dense Sphere Packings
Author: Thomas Callister Hales
Publisher: Cambridge University Press
Total Pages: 286
Release: 2012-09-06
Genre: Mathematics
ISBN: 0521617707

The definitive account of the recent computer solution of the oldest problem in discrete geometry.

Sphere Packings, Lattices and Groups

Sphere Packings, Lattices and Groups
Author: John H. Conway
Publisher: Springer Science & Business Media
Total Pages: 690
Release: 2013-04-17
Genre: Mathematics
ISBN: 1475720165

The main themes. This book is mainly concerned with the problem of packing spheres in Euclidean space of dimensions 1,2,3,4,5, . . . . Given a large number of equal spheres, what is the most efficient (or densest) way to pack them together? We also study several closely related problems: the kissing number problem, which asks how many spheres can be arranged so that they all touch one central sphere of the same size; the covering problem, which asks for the least dense way to cover n-dimensional space with equal overlapping spheres; and the quantizing problem, important for applications to analog-to-digital conversion (or data compression), which asks how to place points in space so that the average second moment of their Voronoi cells is as small as possible. Attacks on these problems usually arrange the spheres so their centers form a lattice. Lattices are described by quadratic forms, and we study the classification of quadratic forms. Most of the book is devoted to these five problems. The miraculous enters: the E 8 and Leech lattices. When we investigate those problems, some fantastic things happen! There are two sphere packings, one in eight dimensions, the E 8 lattice, and one in twenty-four dimensions, the Leech lattice A , which are unexpectedly good and very 24 symmetrical packings, and have a number of remarkable and mysterious properties, not all of which are completely understood even today.

The Pursuit of Perfect Packing

The Pursuit of Perfect Packing
Author: Denis Weaire
Publisher: CRC Press
Total Pages: 147
Release: 2000-01-01
Genre: Mathematics
ISBN: 142003331X

In 1998 Thomas Hales dramatically announced the solution of a problem that has long teased eminent mathematicians: what is the densest possible arrangement of identical spheres? The Pursuit of Perfect Packing recounts the story of this problem and many others that have to do with packing things together. The examples are taken from mathematics, phy

Lattice Coding for Signals and Networks

Lattice Coding for Signals and Networks
Author: Ram Zamir
Publisher: Cambridge University Press
Total Pages: 459
Release: 2014-08-07
Genre: Technology & Engineering
ISBN: 1139991590

Unifying information theory and digital communication through the language of lattice codes, this book provides a detailed overview for students, researchers and industry practitioners. It covers classical work by leading researchers in the field of lattice codes and complementary work on dithered quantization and infinite constellations, and then introduces the more recent results on 'algebraic binning' for side-information problems, and linear/lattice codes for networks. It shows how high dimensional lattice codes can close the gap to the optimal information theoretic solution, including the characterisation of error exponents. The solutions presented are based on lattice codes, and are therefore close to practical implementations, with many advanced setups and techniques, such as shaping, entropy-coding, side-information and multi-terminal systems. Moreover, some of the network setups shown demonstrate how lattice codes are potentially more efficient than traditional random-coding solutions, for instance when generalising the framework to Gaussian networks.

Packing and Covering

Packing and Covering
Author: C. A. Rogers
Publisher: Cambridge University Press
Total Pages: 0
Release: 1964-01-03
Genre: Mathematics
ISBN: 0521061210

Professor Rogers has written this economical and logical exposition of the theory of packing and covering at a time when the simplest general results are known and future progress seems likely to depend on detailed and complicated technical developments. The book treats mainly problems in n-dimensional space, where n is larger than 3. The approach is quantative and many estimates for packing and covering densities are obtained. The introduction gives a historical outline of the subject, stating results without proof, and the succeeding chapters contain a systematic account of the general results and their derivation. Some of the results have immediate applications in the theory of numbers, in analysis and in other branches of mathematics, while the quantative approach may well prove to be of increasing importance for further developments.

Mordell–Weil Lattices

Mordell–Weil Lattices
Author: Matthias Schütt
Publisher: Springer Nature
Total Pages: 436
Release: 2019-10-17
Genre: Mathematics
ISBN: 9813293012

This book lays out the theory of Mordell–Weil lattices, a very powerful and influential tool at the crossroads of algebraic geometry and number theory, which offers many fruitful connections to other areas of mathematics. The book presents all the ingredients entering into the theory of Mordell–Weil lattices in detail, notably, relevant portions of lattice theory, elliptic curves, and algebraic surfaces. After defining Mordell–Weil lattices, the authors provide several applications in depth. They start with the classification of rational elliptic surfaces. Then a useful connection with Galois representations is discussed. By developing the notion of excellent families, the authors are able to design many Galois representations with given Galois groups such as the Weyl groups of E6, E7 and E8. They also explain a connection to the classical topic of the 27 lines on a cubic surface. Two chapters deal with elliptic K3 surfaces, a pulsating area of recent research activity which highlights many central properties of Mordell–Weil lattices. Finally, the book turns to the rank problem—one of the key motivations for the introduction of Mordell–Weil lattices. The authors present the state of the art of the rank problem for elliptic curves both over Q and over C(t) and work out applications to the sphere packing problem. Throughout, the book includes many instructive examples illustrating the theory.