N-Heterocyclic Carbenes in Transition Metal Catalysis and Organocatalysis

N-Heterocyclic Carbenes in Transition Metal Catalysis and Organocatalysis
Author: Catherine S.J. Cazin
Publisher: Springer Science & Business Media
Total Pages: 348
Release: 2010-10-04
Genre: Science
ISBN: 9048128668

N-Heterocyclic Carbenes in Transition Metal Catalysis and Organocatalysis features all catalytic reactions enabled by N-heterocyclic carbenes (NHCs), either directly as organocatalysts or as ligands for transition metal catalysts. An explosion in the use of NHCs has been reported in the literature during the past seven years making this comprehensive overview highly apropos. The book begins with an introductory overview of NHCs which could have been subtitled all you need to know about NHCs. The main body of the book is dedicated to applications of NHCs in catalysis. In addition to the success stories of NHCs in metathesis, NHCs in cross coupling and more recently NHCs in organocatalysis, all other less publicized areas are also covered. As the success of NHCs is generally attributed to their potential to stabilize metal centres, the inclusion of a chapter on the decomposition of NHC catalysts is pertinent. The book closes with a chapter describing the applications of NHCs in industrial processes, which is the first coverage of its kind, and brings a unique industrial context to this book. Included in this book: Historical aspects of NHCs Synthetic pathways to NHC precursors, free NHCs and complexes Methods of characterisation of NHCs and related complexes Electronic properties of NHCs Steric properties of NHCs and models for their description NHCs for metathesis and cross-coupling reactions NHCs as organocatalysts NHC Transition-Metal mediated oxidations, additions to multiple bonds, polymerisation and oligomerisation, cyclisations, direct arylations, reactions involving CO, C-F and C-H bond activation, ... Decomposition of NHC-containing catalysts Industrial applications involving NHC-containing catalysts N-Heterocyclic Carbenes in Transition Metal Catalysis and Organocatalysis provides a fresh view of NHCs since most contributors are young emerging researchers in the field of homogeneous catalysis using NHCs. This group of contributors is complemented by highly established academic researchers and an industrialist. This book is comprehensive, from the basic features of NHCs to the latest advances, hence it is suitable for both the novice and the expert.

N-Heterocyclic Carbenes in Transition Metal Catalysis

N-Heterocyclic Carbenes in Transition Metal Catalysis
Author: Frank Glorius
Publisher: Springer
Total Pages: 240
Release: 2007-02-05
Genre: Science
ISBN: 3540369309

In this book leading experts have surveyed major areas of application of NHC metal complexes in catalysis. The authors have placed a special focus on nickel- and palladium-catalyzed reactions, on applications in metathesis reactions, on oxidation reactions and on the use of chiral NHC-based catalysts. This compilation is rounded out by an introductory chapter and a chapter dealing with synthetic routes to NHC metal complexes.

Late Transition Metal Complexes Incorporating Hemilabile Mixed-donor N-heterocyclic Carbene Ligands

Late Transition Metal Complexes Incorporating Hemilabile Mixed-donor N-heterocyclic Carbene Ligands
Author:
Publisher:
Total Pages:
Release: 2004
Genre:
ISBN:

The discovery of N-heterocyclic carbenes (NHC) has dramatically affected the world of catalysis. Their inherent properties that make them excellent auxiliary ligands for catalytic processes have countless laboratories worldwide probing and exploiting every notable feature they possess. However, while there is no shortage of attention in this field of research, there has been considerably less interest in NHCs with an ability chelate to metals via a mixed-donor ligand architecture. Thus, this thesis describes the synthesis and application of a ligand set comprised of bidentate mixed-donor NHC ligands. The ligands prepared all contain a mesitylimidazol-2-ylidene core unit, but incorporate different donor-functionalized tethers. These mixed-donor NHC ligands are synthesized by using a strong base, such as KN(SiMe3)2, to deprotonate the imidazolium salt precursors. This strategy was used to effectively prepare 1-mesityl-3-(2-(mesitylamino)ethyl)imidazol-2-ylidene, Mes[CNH] and 1-mesityl-3-(2-aminoethyl)imidazol-2-ylidene, Mes[CNH2]. Mes[CNH] was found to be a convenient proligand for the synthesis of various M-NHC (M = Rh, Ir, Ru, Pd, Ni, Fe, Ag, Li) compounds. These Mes[CNH]-M complexes demonstrated the hemilabile character of the Mes[CNH] ligand forming complexes that incorporated either a coordinated or uncoordinated amino tether. Mes[CNH]M(diene)Cl, Mes[CN]M(diene) and [Mes[CNH]M(diene)]BF4(M = Rh, Ir; diene = 1,5-cyclooctadiene, 2,5-norbornadiene) were synthesized and investigated for their ability to perform hydrogenation and hydrosilylation reactions with various substrates. Mes[CNH]Ru(=CHPh)(PCy3)Cl2, Mes[CNH]Ru(=CHPh)(py)Cl2 (py = pyridine) and Mes[CNH]Ru(=CHPh)(PMe3)Cl2 were also synthesized and fully characterized. The activity of the former two Ru complexes was studied for their ability to catalyze ring-closing metathesis (RCM) and ring-opening metathesis polymerization (ROMP) reactions. In addition, the phosphine dissociation rate of Mes[CNH]Ru(=CHPh)(PCy3).

N-heterocyclic Carbenes

N-heterocyclic Carbenes
Author: Silvia Díez-González
Publisher: Royal Society of Chemistry
Total Pages: 469
Release: 2011
Genre: Science
ISBN: 1849730423

Over the last fifteen years, N-heterocyclic carbenes (NHCs) have mostly been used as ancillary ligands for the preparation of transition metal-based catalysts. Compared to phosphorus-containing ligands, NHCs tend to bind more strongly to metal centres, avoiding the necessity for the use of excess ligand in catalytic reactions. The corresponding complexes are often less sensitive to air and moisture, and have proven remarkably resistant to oxidation. Recent developments in catalysis applications have been facilitated by the availability of carbenes stable enough to be bottled, particularly for their use as organocatalysts. This book shows how N-heterocyclic carbenes can be useful in various fields of chemistry and not merely laboratory curiosities or simple phosphine mimics. NHCs are best known for their contribution to ruthenium and palladium-catalysed reactions but the scope of this book is much broader. The synthesis of NHC ligands and their corresponding metal complexes are covered in depth. Moreover, the biological activity of NHC-containing complexes, as well as an overview of their theoretical aspects are included. Such metal species are further examined, not only in terms of their catalytic applications, but also of their stereoelectronic parameters and reactivity/stability. Finally, special attention is given to the hot topic of organocatalysis. The book will be of interest to postgraduates, academic researchers and those working in industry.

N-Heterocyclic Carbenes in Transition Metal Catalysis and Organocatalysis

N-Heterocyclic Carbenes in Transition Metal Catalysis and Organocatalysis
Author: Catherine S.J. Cazin
Publisher: Springer
Total Pages: 340
Release: 2010-11-04
Genre: Science
ISBN: 9789048128679

N-Heterocyclic Carbenes in Transition Metal Catalysis and Organocatalysis features all catalytic reactions enabled by N-heterocyclic carbenes (NHCs), either directly as organocatalysts or as ligands for transition metal catalysts. An explosion in the use of NHCs has been reported in the literature during the past seven years making this comprehensive overview highly apropos. The book begins with an introductory overview of NHCs which could have been subtitled all you need to know about NHCs. The main body of the book is dedicated to applications of NHCs in catalysis. In addition to the success stories of NHCs in metathesis, NHCs in cross coupling and more recently NHCs in organocatalysis, all other less publicized areas are also covered. As the success of NHCs is generally attributed to their potential to stabilize metal centres, the inclusion of a chapter on the decomposition of NHC catalysts is pertinent. The book closes with a chapter describing the applications of NHCs in industrial processes, which is the first coverage of its kind, and brings a unique industrial context to this book. Included in this book: Historical aspects of NHCs Synthetic pathways to NHC precursors, free NHCs and complexes Methods of characterisation of NHCs and related complexes Electronic properties of NHCs Steric properties of NHCs and models for their description NHCs for metathesis and cross-coupling reactions NHCs as organocatalysts NHC Transition-Metal mediated oxidations, additions to multiple bonds, polymerisation and oligomerisation, cyclisations, direct arylations, reactions involving CO, C-F and C-H bond activation, ... Decomposition of NHC-containing catalysts Industrial applications involving NHC-containing catalysts N-Heterocyclic Carbenes in Transition Metal Catalysis and Organocatalysis provides a fresh view of NHCs since most contributors are young emerging researchers in the field of homogeneous catalysis using NHCs. This group of contributors is complemented by highly established academic researchers and an industrialist. This book is comprehensive, from the basic features of NHCs to the latest advances, hence it is suitable for both the novice and the expert.

Late Transition Metal-Carboryne Complexes

Late Transition Metal-Carboryne Complexes
Author: Zaozao Qiu
Publisher: Springer Science & Business Media
Total Pages: 143
Release: 2012-01-05
Genre: Science
ISBN: 3642243606

Zaozao Qiu shows in this thesis that transition metals can mediate or catalyze the cycloaddition or coupling reactions of carboryne with alkynes or alkenes to afford benzocarboranes, alkenylcarboranes or dihydrobenzocarboranes. These results represent powerful strategies to assemble useful complex molecules from very simple precursors in a single operation. Carboranes have many applications in medicine. However, their unique structures make derivatization difficult and the limited efficient synthetic methods to obtain functional carborane materials have restricted applications of carboranes within a narrow scope. This work breaks a new ground in metal-carboryne chemistry and will have a significant impact on synthetic, cluster and materials chemistry.

Chiral Donor-Functionalized N-Heterocyclic Carbenes for Asymmetric Catalytic Applications in Hydrogenation - From Design to Application

Chiral Donor-Functionalized N-Heterocyclic Carbenes for Asymmetric Catalytic Applications in Hydrogenation - From Design to Application
Author: Kai Yang Wan
Publisher:
Total Pages: 0
Release: 2018
Genre:
ISBN:

In this thesis, the synthetic protocol for a new class of enantiopure, primary-amine tethered N-heterocyclic carbene (NHC) ligands is described. The synthesis, coordination chemistry, and applications in catalysis for three ligands from this class with general formula (S,S)/(R,R)-H2N-CHPh-CHPh-NHC (NHC = -NCHCHN(C)R, R = Me, tBu, or Mes) are reported. The imidazolium salt of these ligands can be prepared in high yield and purity from the SN1 reaction between chiral sulfamidates and the corresponding N-substituted imidazoles. The method of coordination of the NHC ligands to metals depends on the acidity of the C-H functional in the imidazolium salts. Silver and copper compounds can be prepared in high yield with the ligand to the metal ratio of 2:1 or 1:1. Ruthenium, iridium, and rhodium complexes can also be prepared via transmetallation from the silver or copper reagents, intramolecular base deprotonation, or C-H oxidative addition. Four ruthenium complexes and two iridium complexes based on these ligands were proven active for ketone hydrogenation, under relatively mild condition (50°C, 25 bar H2(g)). Three half-sandwich ruthenium compounds containing Cp (cyclopentadienyl) or Cp* (1,2,3,4,5-pentamethylcyclopentadienyl) are highly active aryl and alkyl hydrogenation catalysts with TOF (turnover frequency) up to 67 s-1, TON (turnover number) up to 104, and ee (enantiomeric excess) up to 86%. An experimental and computational study of the half-sandwich ruthenium systems suggests that the heterolytic splitting of dihydrogen over the metal-amido bond and hydride transfer from the catalyst to the substrate can both be rate-determining. An alcohol-assisted mechanism was also calculated to explain the rate enhancement when the catalysis was conducted in polar, protic solvents such as 2-PrOH. A full experimental and computational study was also performed for a Fe(P-NH-P') system. Similarly, heterolytic splitting and hydride transfer are the two most energy demanding transition states. In addition, the enantiodetermining step (EDS) of this asymmetric ketone hydrogenation catalyst was calculated, and the origins of enantioselectivity were summarized as steric repulsion, the high compressibility of the backbone, and H-bond contributed stabilization.

C-X Bond Formation

C-X Bond Formation
Author: Arkadi Vigalok
Publisher: Springer
Total Pages: 198
Release: 2010-06-30
Genre: Science
ISBN: 3642120733

Contents: Kilian Muñiz: Transition Metal Catalyzed Electrophilic Halogenation of C-H bonds in alpha-Position to Carbonyl Groups; Arkadi Vigalok * and Ariela W Kaspi: Late Transition Metal-Mediated Formation of Carbon-Halogen Bonds; Paul Bichler and Jennifer A. Love*: Organometallic Approaches to Carbon-Sulfur Bond Formation; David S. Glueck: Recent Advances in Metal-Catalyzed C-P Bond Formation; Andrei N. Vedernikov: C-O Reductive Elimination from High Valent Pt and Pd Centers; Lukas Hintermann: Recent Developments in Metal-Catalyzed Additions of Oxygen Nucleophiles to Alkenes and Alkynes; Moris S. Eisen: Catalytic C-N, C-O and C-S bond formation promoted by organoactinide complexes.