Laser Dynamics

Laser Dynamics
Author: Thomas Erneux
Publisher: Cambridge University Press
Total Pages: 376
Release: 2010-04-29
Genre: Science
ISBN: 9780521830409

Bridging the gap between laser physics and applied mathematics, this book offers a new perspective on laser dynamics. Combining fresh treatments of classic problems with up-to-date research, asymptotic techniques appropriate for nonlinear dynamical systems are shown to offer a powerful alternative to numerical simulations. The combined analytical and experimental description of dynamical instabilities provides a clear derivation of physical formulae and an evaluation of their significance. Starting with the observation of different time scales of an operating laser, the book develops approximation techniques to systematically explore their effects. Laser dynamical regimes are introduced at different levels of complexity, from standard turn-on experiments to stiff, chaotic, spontaneous or driven pulsations. Particular attention is given to quantitative comparisons between experiments and theory. The book broadens the range of analytical tools available to laser physicists and provides applied mathematicians with problems of practical interest, making it invaluable for graduate students and researchers.

Nonlinear Laser Dynamics

Nonlinear Laser Dynamics
Author: Kathy Lüdge
Publisher: John Wiley & Sons
Total Pages: 412
Release: 2012-04-09
Genre: Science
ISBN: 3527639837

A distinctive discussion of the nonlinear dynamical phenomena of semiconductor lasers. The book combines recent results of quantum dot laser modeling with mathematical details and an analytic understanding of nonlinear phenomena in semiconductor lasers and points out possible applications of lasers in cryptography and chaos control. This interdisciplinary approach makes it a unique and powerful source of knowledge for anyone intending to contribute to this field of research. By presenting both experimental and theoretical results, the distinguished authors consider solitary lasers with nano-structured material, as well as integrated devices with complex feedback sections. In so doing, they address such topics as the bifurcation theory of systems with time delay, analysis of chaotic dynamics, and the modeling of quantum transport. They also address chaos-based cryptography as an example of the technical application of highly nonlinear laser systems.

Fundamentals of Laser Dynamics

Fundamentals of Laser Dynamics
Author: I͡Akov Izrailevich Khanin
Publisher: Cambridge Int Science Publishing
Total Pages: 376
Release: 2006
Genre: Technology & Engineering
ISBN: 1904602118

The book explores the current state of laser dynamics and provides reference data and basic experimental facts for old- and new-generation lasers. The most frequently used mathematical models are presented. The author discusses the reasons for the spontaneous occurrence of pulsation of the intensity of radiation of solid-state lasers and the influence of the non-stationary nature of laser elements on lasing characteristics. Special emphasis is placed on the problems of the low-frequency dynamics of multimode lasers. This book is aimed at experts in the fields of quantum electronics and laser physics.

Laser Chemistry

Laser Chemistry
Author: Helmut H. Telle
Publisher: John Wiley & Sons
Total Pages: 516
Release: 2007-04-30
Genre: Science
ISBN: 9780470059401

Laser Chemistry: Spectroscopy, Dynamics and Applications provides a basic introduction to the subject, written for students and other novices. It assumes little in the way of prior knowledge, and carefully guides the reader through the important theory and concepts whilst introducing key techniques and applications.

Laser Dynamics

Laser Dynamics
Author: Thomas Erneux
Publisher: Cambridge University Press
Total Pages: 379
Release: 2010-04-29
Genre: Science
ISBN: 1139486977

Bridging the gap between laser physics and applied mathematics, this book offers a new perspective on laser dynamics. Combining fresh treatments of classic problems with up-to-date research, asymptotic techniques appropriate for nonlinear dynamical systems are shown to offer a powerful alternative to numerical simulations. The combined analytical and experimental description of dynamical instabilities provides a clear derivation of physical formulae and an evaluation of their significance. Starting with the observation of different time scales of an operating laser, the book develops approximation techniques to systematically explore their effects. Laser dynamical regimes are introduced at different levels of complexity, from standard turn-on experiments to stiff, chaotic, spontaneous or driven pulsations. Particular attention is given to quantitative comparisons between experiments and theory. The book broadens the range of analytical tools available to laser physicists and provides applied mathematicians with problems of practical interest, making it invaluable for graduate students and researchers.

Semiconductor Laser Dynamics

Semiconductor Laser Dynamics
Author: Daan Lenstra
Publisher:
Total Pages: 244
Release: 2020-09-10
Genre:
ISBN: 9783039430666

This is a collection of 18 papers, two of which are reviews and seven are invited feature papers, that together form the Photonics Special Issue "Semiconductor Laser Dynamics: Fundamentals and Applications", published in 2020. This collection is edited by Daan Lenstra, an internationally recognized specialist in the field for 40 years.

Principles of Laser Dynamics

Principles of Laser Dynamics
Author: Y.I. Khanin
Publisher: Newnes
Total Pages: 420
Release: 2012-12-02
Genre: Technology & Engineering
ISBN: 0444598871

This monograph summarizes major achievements in laser dynamics over the past three decades. The book begins with two introductory Chapters. Chapter 1 offers general considerations on quantum oscillators, formulates the requirements for the laser key elements and shows how these requirements are met in different laser systems. The second Chapter proposes the mathematical models used in semiclassical laser theory, discusses the approximations and simplifications in particular cases, and specifies the range of applicability of these models. In Chapters 3-5 attention is given primarily to the steady states and their stability, the laser behavior in the instability domain, the characteristics of regular and chaotic pulsations and the nature of their mechanisms. Chapter 6 deals with the processes in a laser, accompanying the time variance of laser parameters. Considerable attention is given to a laser response to weak, low-frequency modulation of the parameters. The problems addressed therein are resonant modulation enhancement, transition to the nonlinear regime, chaotic response to periodic impact, spike-like generation due to variation of the cavity geometry and a laser rod temperature drift. Laser behavior is subject to qualitative changes if its optical elements exhibit nonlinear properties. The action of a saturable absorber, which leads to a loss of laser stability and provides passive Q-modulation, is investigated. To a much lesser degree the researchers' attention has been attracted by other nonlinear effects such as self-focusing, e.g., which may have a strong influence on laser dynamics. All of these issues are covered in Chapter 7. The book is intended for researchers, engineers, graduate and post-graduate students majoring in quantum electronics.

Optical Communication with Chaotic Lasers

Optical Communication with Chaotic Lasers
Author: Atsushi Uchida
Publisher: John Wiley & Sons
Total Pages: 669
Release: 2012-02-13
Genre: Technology & Engineering
ISBN: 352740869X

Starting with an introduction to the fundamental physics in chaotic instabilities in laser systems, this comprehensive and unified reference goes on to present the techniques and technology of synchronization of chaos in coupled lasers, as well as the many applications to lasers and optics, communications, security and information technology. Throughout, it presents the current state of knowledge, including encoding/decoding techniques, performance of chaotic communication systems, random number generation, and novel communication technologies.

LDA Application Methods

LDA Application Methods
Author: Zhengji Zhang
Publisher: Springer Science & Business Media
Total Pages: 274
Release: 2010-08-12
Genre: Technology & Engineering
ISBN: 3642135145

This technical book considers the application side of LDA techniques. Starting from the basic theories that are crucial for each LDA user, the main subject of the book is focused on diverse application methods. In details, it deals with universal methodical techniques that have been mostly developed in the last 15 years. The book thus gives for the first time an application reference for LDA users in improving the optical conditions and enhancing the measurement accuracies. It also provides the guidelines for simplifying the measurements and correcting measurement errors as well as for clarifying the application limits and extending the application areas of LDA techniques. Beside the treatments of some traditional optical and flow mechanical features influencing the measurement accuracies, the book shows a broad spectrum of LDA application methods in the manner of measuring the flow turbulence, resolving the secondary flow structures, and quantifying the optical aberrations at measurements of internal flows etc.. Thus, it also supports the further developments of both the hard- and software of LDA instrumentations.

Passively Mode-Locked Semiconductor Lasers

Passively Mode-Locked Semiconductor Lasers
Author: Lina Jaurigue
Publisher: Springer
Total Pages: 206
Release: 2017-06-22
Genre: Science
ISBN: 3319588745

This thesis investigates the dynamics of passively mode-locked semiconductor lasers, with a focus on the influence of optical feedback on the noise characteristics. The results presented here are important for improving the performance of passively mode-locked semiconductor lasers and, at the same time, are relevant for understanding delay-systems in general. The semi-analytic results developed are applicable to a broad range of oscillatory systems with time-delayed feedback, making the thesis of relevance to various scientific communities. Passively mode-locked lasers can produce pulse trains and have applications in the contexts of optical clocking, microscopy and optical data communication, among others. Using a system of delay differential equations to model these devices, a combination of numerical and semi-analytic methods is developed and used to characterize this system.