Large Scale Genome Sequence Processing
Download Large Scale Genome Sequence Processing full books in PDF, epub, and Kindle. Read online free Large Scale Genome Sequence Processing ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Masahiro Kasahara |
Publisher | : Imperial College Press |
Total Pages | : 252 |
Release | : 2006 |
Genre | : Science |
ISBN | : 1860946356 |
Efficient computer programs have made it possible to elucidate and analyze large-scale genomic sequences. Fundamental tasks, such as the assembly of numerous whole-genome shotgun fragments, the alignment of complementary DNA sequences with a long genome, and the design of gene-specific primers or oligomers, require efficient algorithms and state-of-the-art implementation techniques. This textbook emphasizes basic software implementation techniques for processing large-scale genome sequences and provides executable sample programs. Book jacket.
Author | : Dan Gusfield |
Publisher | : Cambridge University Press |
Total Pages | : 556 |
Release | : 1997-05-28 |
Genre | : Computers |
ISBN | : 1139811002 |
String algorithms are a traditional area of study in computer science. In recent years their importance has grown dramatically with the huge increase of electronically stored text and of molecular sequence data (DNA or protein sequences) produced by various genome projects. This book is a general text on computer algorithms for string processing. In addition to pure computer science, the book contains extensive discussions on biological problems that are cast as string problems, and on methods developed to solve them. It emphasises the fundamental ideas and techniques central to today's applications. New approaches to this complex material simplify methods that up to now have been for the specialist alone. With over 400 exercises to reinforce the material and develop additional topics, the book is suitable as a text for graduate or advanced undergraduate students in computer science, computational biology, or bio-informatics. Its discussion of current algorithms and techniques also makes it a reference for professionals.
Author | : Donald Adjeroh |
Publisher | : Springer Science & Business Media |
Total Pages | : 353 |
Release | : 2008-06-17 |
Genre | : Computers |
ISBN | : 038778909X |
The Burrows-Wheeler Transform is one of the best lossless compression me- ods available. It is an intriguing — even puzzling — approach to squeezing redundancy out of data, it has an interesting history, and it has applications well beyond its original purpose as a compression method. It is a relatively late addition to the compression canon, and hence our motivation to write this book, looking at the method in detail, bringing together the threads that led to its discovery and development, and speculating on what future ideas might grow out of it. The book is aimed at a wide audience, ranging from those interested in learning a little more than the short descriptions of the BWT given in st- dard texts, through to those whose research is building on what we know about compression and pattern matching. The ?rst few chapters are a careful description suitable for readers with an elementary computer science ba- ground (and these chapters have been used in undergraduate courses), but later chapters collect a wide range of detailed developments, some of which are built on advanced concepts from a range of computer science topics (for example, some of the advanced material has been used in a graduate c- puter science course in string algorithms). Some of the later explanations require some mathematical sophistication, but most should be accessible to those with a broad background in computer science.
Author | : Veli Mäkinen |
Publisher | : Cambridge University Press |
Total Pages | : 470 |
Release | : 2023-10-12 |
Genre | : Computers |
ISBN | : 1009341219 |
Guided by standard bioscience workflows in high-throughput sequencing analysis, this book for graduate students, researchers, and professionals in bioinformatics and computer science offers a unified presentation of genome-scale algorithms. This new edition covers the use of minimizers and other advanced data structures in pangenomics approaches.
Author | : Altuna Akalin |
Publisher | : CRC Press |
Total Pages | : 463 |
Release | : 2020-12-16 |
Genre | : Mathematics |
ISBN | : 1498781861 |
Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015.
Author | : Jerzy Kulski |
Publisher | : BoD – Books on Demand |
Total Pages | : 466 |
Release | : 2016-01-14 |
Genre | : Medical |
ISBN | : 9535122401 |
Next generation sequencing (NGS) has surpassed the traditional Sanger sequencing method to become the main choice for large-scale, genome-wide sequencing studies with ultra-high-throughput production and a huge reduction in costs. The NGS technologies have had enormous impact on the studies of structural and functional genomics in all the life sciences. In this book, Next Generation Sequencing Advances, Applications and Challenges, the sixteen chapters written by experts cover various aspects of NGS including genomics, transcriptomics and methylomics, the sequencing platforms, and the bioinformatics challenges in processing and analysing huge amounts of sequencing data. Following an overview of the evolution of NGS in the brave new world of omics, the book examines the advances and challenges of NGS applications in basic and applied research on microorganisms, agricultural plants and humans. This book is of value to all who are interested in DNA sequencing and bioinformatics across all fields of the life sciences.
Author | : Sara El-Metwally |
Publisher | : Springer Science & Business |
Total Pages | : 123 |
Release | : 2014-04-19 |
Genre | : Science |
ISBN | : 1493907158 |
The introduction of Next Generation Sequencing (NGS) technologies resulted in a major transformation in the way scientists extract genetic information from biological systems, revealing limitless insight about the genome, transcriptome and epigenome of any species. However, with NGS, came its own challenges that require continuous development in the sequencing technologies and bioinformatics analysis of the resultant raw data and assembly of the full length genome and transcriptome. Such developments lead to outstanding improvements of the performance and coverage of sequencing and improved quality for the assembled sequences, nevertheless, challenges such as sequencing errors, expensive processing and memory usage for assembly and sequencer specific errors remains major challenges in the field. This book aims to provide brief overviews the NGS field with special focus on the challenges facing the NGS field, including information on different experimental platforms, assembly algorithms and software tools, assembly error correction approaches and the correlated challenges.
Author | : National Research Council |
Publisher | : National Academies Press |
Total Pages | : 128 |
Release | : 1988-01-01 |
Genre | : Science |
ISBN | : 0309038405 |
There is growing enthusiasm in the scientific community about the prospect of mapping and sequencing the human genome, a monumental project that will have far-reaching consequences for medicine, biology, technology, and other fields. But how will such an effort be organized and funded? How will we develop the new technologies that are needed? What new legal, social, and ethical questions will be raised? Mapping and Sequencing the Human Genome is a blueprint for this proposed project. The authors offer a highly readable explanation of the technical aspects of genetic mapping and sequencing, and they recommend specific interim and long-range research goals, organizational strategies, and funding levels. They also outline some of the legal and social questions that might arise and urge their early consideration by policymakers.
Author | : Vladimir B Bajic |
Publisher | : World Scientific |
Total Pages | : 799 |
Release | : 2005-06-01 |
Genre | : Science |
ISBN | : 1783260270 |
Information processing and information flow occur in the course of an organism's development and throughout its lifespan. Organisms do not exist in isolation, but interact with each other constantly within a complex ecosystem. The relationships between organisms, such as those between prey or predator, host and parasite, and between mating partners, are complex and multidimensional. In all cases, there is constant communication and information flow at many levels.This book focuses on information processing by life forms and the use of information technology in understanding them. Readers are first given a comprehensive overview of biocomputing before navigating the complex terrain of natural processing of biological information using physiological and analogous computing models. The remainder of the book deals with “artificial” processing of biological information as a human endeavor in order to derive new knowledge and gain insight into life forms and their functioning. Specific innovative applications and tools for biological discovery are provided as the link and complement to biocomputing.Since “artificial” processing of biological information is complementary to natural processing, a better understanding of the former helps us improve the latter. Consequently, readers are exposed to both domains and, when dealing with biological problems of their interest, will be better equipped to grasp relevant ideas.
Author | : Eugene V. Koonin |
Publisher | : Springer Science & Business Media |
Total Pages | : 482 |
Release | : 2013-06-29 |
Genre | : Science |
ISBN | : 1475737831 |
Sequence - Evolution - Function is an introduction to the computational approaches that play a critical role in the emerging new branch of biology known as functional genomics. The book provides the reader with an understanding of the principles and approaches of functional genomics and of the potential and limitations of computational and experimental approaches to genome analysis. Sequence - Evolution - Function should help bridge the "digital divide" between biologists and computer scientists, allowing biologists to better grasp the peculiarities of the emerging field of Genome Biology and to learn how to benefit from the enormous amount of sequence data available in the public databases. The book is non-technical with respect to the computer methods for genome analysis and discusses these methods from the user's viewpoint, without addressing mathematical and algorithmic details. Prior practical familiarity with the basic methods for sequence analysis is a major advantage, but a reader without such experience will be able to use the book as an introduction to these methods. This book is perfect for introductory level courses in computational methods for comparative and functional genomics.