Large Plastic Deformations: Fundamental Aspects and Applications to Metal Forming

Large Plastic Deformations: Fundamental Aspects and Applications to Metal Forming
Author: J.L. Raphanel
Publisher: Routledge
Total Pages: 484
Release: 2021-09-17
Genre: Science
ISBN: 1351435744

This volume covers topics involving large plastic deformation of metallic materials. These proceedings offer an overview of the synergism achieved by combining microstructural characterization and understanding, mechanical modelling and experiments, numerical analysis and computation.

Unit Manufacturing Processes

Unit Manufacturing Processes
Author: National Research Council
Publisher: National Academies Press
Total Pages: 228
Release: 1995-01-03
Genre: Technology & Engineering
ISBN: 0309176670

Manufacturing, reduced to its simplest form, involves the sequencing of product forms through a number of different processes. Each individual step, known as an unit manufacturing process, can be viewed as the fundamental building block of a nation's manufacturing capability. A committee of the National Research Council has prepared a report to help define national priorities for research in unit processes. It contains an organizing framework for unit process families, criteria for determining the criticality of a process or manufacturing technology, examples of research opportunities, and a prioritized list of enabling technologies that can lead to the manufacture of products of superior quality at competitive costs. The study was performed under the sponsorship of the National Science Foundation and the Defense Department's Manufacturing Technology Program.

Finite Inelastic Deformations — Theory and Applications

Finite Inelastic Deformations — Theory and Applications
Author: Dieter Besdo
Publisher: Springer Science & Business Media
Total Pages: 559
Release: 2013-03-08
Genre: Technology & Engineering
ISBN: 3642848338

The IUTAM-Symposium on "Finite Inelastic Deformations - Theory and Applications" took place from August 19 to 23, 1991, at the University of Hannover, Germany, with 75 participants from 14 countries. Scope of the symposium was a fundamental treatment of new developments in plasticity and visco-plasticity at finite strains. This covered the phenomenological material theory based on continuum mechanics as well as the treatment of microstructural phenomena detected by precise experimental datas. In a restricted number, lectures on new experi mental facilities for measuring finite strains were also implemented into the symposium. Another important topic of the symposium was the treatment of reliable and effective computational methods for solving engineering problems with finite inelastic strains. Wi thin this context it was an essential feature that theory, numerical and computational analysis were be seen in an integrated way. In total 9 sessions with 37 lectures, many of them given by well known keynote-lecturers, and a poster session with 10 contributions met fully our expectations of a high ranking up-to-date forum for the interaction of four topics, namely the physical and mathematical modelling of finite strain inelastic deformations including localizations and damage as well as the achievements in the numerical analysis and implementation and the solution of complicated engineering systems. Special and important features were reliable material datas from macroscopic and microscopic tests as well as test results of complex engineering problems, like deep drawing and extrusion.

Plasticity and Textures

Plasticity and Textures
Author: W. Gambin
Publisher: Springer Science & Business Media
Total Pages: 254
Release: 2013-04-17
Genre: Science
ISBN: 9401597634

The classical, phenomenological theory of plastically anisotropic materials has passed a long way: from the work of von Mises presented in 1928, and the HilI formulation given in 1948, to the latest papers on large elastic-plastic deformations of anisotropic metal sheets. A characteristic feature of this approach is a linear flow rule and a quadratic yield criterion. Mathematical simplicity of the theory is a reason of its numerous applications to the analysis of engineering structures during the onset of plastic deformations. However, such an approach is not sufficient for description of the metal forming processes, when a metal element undergoes very large plastic strains. If we take an initially isotropic piece of metal, it becomes plastically anisotropic during the forming process, and the induced anisotropy progressively increases. This fact strongly determines directions of plastic flow, and it leads to an unexpected strain localization in sheet elements. To explain the above, it is necessary to take into account a polycrystalline structure of the metal, plastic slips on slip systems of grains, crystallographic lattice rotations, and at last, a formation of textures and their evolution during the whole deformation process. In short, it is necessary to introduce the plasticity of crystals and polycrystals. The polycrystal analysis shows that, when the advanced plastic strains take place, some privileged crystallographic directions, called a crystallographic texture, occur in the material. The texture formation and evolution are a primary reason for the induced plastic anisotropy in pure metals.

Plates and Shells

Plates and Shells
Author: Michel Fortin
Publisher: American Mathematical Soc.
Total Pages: 290
Release: 1999
Genre: Mathematics
ISBN: 0821809504

This volume features the proceedings from the Summer Seminar of the Canadian Mathematical Society held at Université Laval. The purpose of the seminar was to gather both mathematicians and engineers interested in the theory or application of plates and shells, or more generally, in the modelisation of thin structures. From this, it was hoped that a better understanding of the problem would emerge for both groups of professionals. New aspects from the mathematical point of view and new applications posing new challenges are reported. This volume offers a snapshot of the state of the art of this rapidly evolving topic.

Modelling and Simulation of Sheet Metal Forming Processes

Modelling and Simulation of Sheet Metal Forming Processes
Author: Marta C. Oliveira
Publisher: MDPI
Total Pages: 254
Release: 2020-04-22
Genre: Technology & Engineering
ISBN: 3039285564

The numerical simulation of sheet metal forming processes has become an indispensable tool for the design of components and their forming processes. This role was attained due to the huge impact in reducing time to market and the cost of developing new components in industries ranging from automotive to packing, as well as enabling an improved understanding of the deformation mechanisms and their interaction with process parameters. Despite being a consolidated tool, its potential for application continues to be discovered with the continuous need to simulate more complex processes, including the integration of the various processes involved in the production of a sheet metal component and the analysis of in-service behavior. The quest for more robust and sustainable processes has also changed its deterministic character into stochastic to be able to consider the scatter in mechanical properties induced by previous manufacturing processes. Faced with these challenges, this Special Issue presents scientific advances in the development of numerical tools that improve the prediction results for conventional forming process, enable the development of new forming processes, or contribute to the integration of several manufacturing processes, highlighting the growing multidisciplinary characteristic of this field.

Metal Forming

Metal Forming
Author: Taylan Altan
Publisher: ASM International(OH)
Total Pages: 384
Release: 1983
Genre: Crafts & Hobbies
ISBN:

Briefly reviews the basic principles of metal forming but major emphasis is on the latest developments in the design of metal-forming operations and tooling. Discusses the position of metal forming in manufacturing and considers a metal-forming process as a system consisting of several interacting variables. Includes an overall review and classification of all metal-forming processes. The fundamentals of plastic deformation - metal flow, flow stress of metals and yield criteria - are discussed, as are significant practical variables of metal- forming processes such as friction, temperatures and forming machines and their characteristics. Examines approximate methods of analyzing simple forming operations, then looks at massive forming processes such as closed-die forging, hot extrusion, cold forging/ extrusion, rolling and drawing (discussion includes the prediction of stresses and load in each process and applications of computer-aided techniques). Recent developments in metal-forming technology, including CAD/CAM for die design and manufacture, are discussed, and a review of the latest trends in metal flow analysis and simulations.