Laminar Turbulent Transition In High Speed Compressible Boundary Layers With Curvature Non Zero Angle Of Attack Experiments
Download Laminar Turbulent Transition In High Speed Compressible Boundary Layers With Curvature Non Zero Angle Of Attack Experiments full books in PDF, epub, and Kindle. Read online free Laminar Turbulent Transition In High Speed Compressible Boundary Layers With Curvature Non Zero Angle Of Attack Experiments ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
A Review of High-speed, Convective, Heat-transfer Computation Methods
Author | : Michael E. Tauber |
Publisher | : |
Total Pages | : 44 |
Release | : 1989 |
Genre | : Aerodynamic heating |
ISBN | : |
Advances in Hypersonics
Author | : BALLMAN |
Publisher | : Springer Science & Business Media |
Total Pages | : 448 |
Release | : 2012-12-06 |
Genre | : Technology & Engineering |
ISBN | : 1461203791 |
These three volumes entitled Advances in Hypersonics contain the Proceedings of the Second and Third Joint US/Europe Short Course in Hypersonics which took place in Colorado Springs and Aachen. The Second Course was organized at the US Air Force Academy, USA in January 1989 and the Third Course at Aachen, Germany in October 1990. The main idea of these Courses was to present to chemists, com puter scientists, engineers, experimentalists, mathematicians, and physicists state of the art lectures in scientific and technical dis ciplines including mathematical modeling, computational methods, and experimental measurements necessary to define the aerothermo dynamic environments for space vehicles such as the US Orbiter or the European Hermes flying at hypersonic speeds. The subjects can be grouped into the following areas: Phys ical environments, configuration requirements, propulsion systems (including airbreathing systems), experimental methods for external and internal flow, theoretical and numerical methods. Since hyper sonic flight requires highly integrated systems, the Short Courses not only aimed to give in-depth analysis of hypersonic research and technology but also tried to broaden the view of attendees to give them the ability to understand the complex problem of hypersonic flight. Most of the participants in the Short Courses prepared a docu ment based on their presentation for reproduction in the three vol umes. Some authors spent considerable time and energy going well beyond their oral presentation to provide a quality assessment of the state of the art in their area of expertise as of 1989 and 1991.
Convective Heat Transfer in Planetary Gases
Author | : Joseph G. Marvin |
Publisher | : |
Total Pages | : 60 |
Release | : 1965 |
Genre | : Heat |
ISBN | : |
Equilibrium convective heat transfer in several real gases was investigated. The gases considered were air, nitrogen, hydrogen, carbon dioxide, and argon. Solutions to the similar form of the boundary-layer equations were obtained for flight velocities to 30,000 ft/sec for a range of parameters sufficient to define the effects of pressure level, pressure gradient, boundary-layer-edge velocity, and wall temperature. Results are presented for stagnation-point heating and for the heating-rate distribution. For the range of parameters investigated the wall heat transfer depended on the transport properties near the wall and precise evaluation of properties in the high-energy portions of the boundary layer was not needed. A correlation of the solutions to the boundary-layer equations was obtained which depended only on the low temperature properties of the gases. This result can be used to evaluate the heat transfer in gases other than those considered. The largest stagnation-point heat transfer at a constant flight velocity was obtained for argon followed successively by carbon dioxide, air, nitrogen, and hydrogen. The blunt-body heating-rate distribution was found to depend mainly on the inviscid flow field. For each gas, correlation equations of boundary-layer thermodynamic and transport properties as a function of enthalpy are given for a wide range of pressures to a maximum enthalpy of 18,000 Btu/lb.
Annual Report
Author | : United States. National Advisory Committee for Aeronautics |
Publisher | : |
Total Pages | : 534 |
Release | : 1953 |
Genre | : Aeronautics |
ISBN | : |