Label Free Biosensor Methods In Drug Discovery
Download Label Free Biosensor Methods In Drug Discovery full books in PDF, epub, and Kindle. Read online free Label Free Biosensor Methods In Drug Discovery ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Matthew Cooper |
Publisher | : John Wiley & Sons |
Total Pages | : 357 |
Release | : 2011-02-11 |
Genre | : Medical |
ISBN | : 1119990270 |
Over the past two decades the benefits of label-free biosensor analysis have begun to make an impact in the market, and systems are beginning to be used as mainstream research tools in many drug discovery laboratories. Label-Free Technologies For Drug Discovery summarises the latest and emerging developments in label-free detection systems, their underlying technology principles and end-user case studies that reveal the power and limitations of label-free in all areas of drug discovery. Label-free technologies discussed include SPR, NMR, high-throughput mass spectrometry, resonant waveguide plate-based screening, transmitted-light imaging, isothermal titration calorimetry, optical and impedance cell-based assays and other biophysical methods. The technologies are discussed in relation to their use as screening technologies, high-content technologies, hit finding and hit validation strategies, mode of action and ADME/T, access to difficult target classes, cell-based receptor/ligand interactions particularly orphan receptors, and antibody and small molecule affinity and kinetic analysis. Label-Free Technologies For Drug Discovery is an essential guide to this emerging class of tools for researchers in drug discovery and development, particularly high-throughput screening and compound profiling teams, medicinal chemists, structural biologists, assay developers, ADME/T specialists, and others interested in biomolecular interaction analysis.
Author | : Matthew A. Cooper |
Publisher | : Cambridge University Press |
Total Pages | : 317 |
Release | : 2009-02-02 |
Genre | : Medical |
ISBN | : 0521884535 |
A detailed technical review of label-free biosensor techniques with worked examples.
Author | : Jian Chen |
Publisher | : Academic Press |
Total Pages | : 184 |
Release | : 2021-10-26 |
Genre | : Science |
ISBN | : 0323885594 |
Biosensors for Single-Cell Analysis explores a wide range of biosensor technologies and their applications in single-cell characterization and analysis. Sections cover key biophysical and chemical single-cell properties that consider proteomic, metabolic, electrical, mechanical and optical properties. Each chapter features key definitions and case studies, providing detailed guidance for researchers who want to replicate covered solutions in their work. Tutorial sections, evaluations of the current state-of-the-field and future developments are also included. Microfluidic approaches to characterization, such as microfluidic impedance flow cytometry and microfluidic flow cytometry are considered alongside more conventional approaches, such as mass spectroscopy, fluorescent and mass flow cytometry. Additionally, key types of biosensors are covered, including atomic force microscopy, micropipette aspiration, optical tweezers, microfluidic hydrodynamic stretchers, microfluidic constriction channel and microfluidic optical stretchers. - Includes chapters focused on key single-cell properties, such as proteomic, metabolic and mechanical characterization - Features case studies that illustrate the application of biosensors for single-cell analysis - Considers microfluidic approaches for each single-cell property discussed - Explores future directions for single-cell analysis and biosensor technology
Author | : Ye Fang |
Publisher | : |
Total Pages | : 390 |
Release | : 2015 |
Genre | : Biomedicine |
ISBN | : 9781493926176 |
This volume explores label-free biosensors, advantageous in part because this technology bypasses the need of labels, reporters, and cell engineering, all of which are common to labeled techniques but may introduce artifacts in assay results. Addressing several fundamental and practical aspects as to how to implement label-free methods in the drug discovery process, this book covers a wide range of topics, including binding kinetics determination, fragment screening, antibody epitope mapping, protein-protein interaction profiling and screening, receptor pathway deconvolution, drug pharmacology profiling and screening, target identification, drug toxicity assessment, and physical phenotype profiling and diagnostics based on various cellular processes such as cell adhesion, migration, invasion, infection, and inflammation. As part of the Methods in Pharmacology and Toxicology series, chapters aim to provide key detail and implementation advice to aid with progress in the lab. Practical and thorough, Label-Free Biosensor Methods in Drug Discovery provides a new avenue for rapid access to a focused collection of highly regarded contributions in the field.
Author | : Michael J. Schöning |
Publisher | : Springer |
Total Pages | : 485 |
Release | : 2018-07-20 |
Genre | : Science |
ISBN | : 3319752200 |
This volume summarizes the state-of-the-art technologies, key advances and future trends in the field of label-free biosensing. It provides detailed insights into the different types of solid-state, label-free biosensors, their underlying transducer principles, advanced materials utilized, device-fabrication techniques and various applications. The book offers graduate students, academic researchers, and industry professionals a comprehensive source of information on all facets of label-free biosensing and the future trends in this flourishing field. Highlights of the subjects covered include label-free biosensing with: · semiconductor field-effect devices such as nanomaterial-modified capacitive electrolyte-insulator-semiconductor structures, silicon nanowire transistors, III-nitride semiconductor devices and light-addressable potentiometric sensors · impedimetric biosensors using planar and 3D electrodes · nanocavity and solid-state nanopore devices · carbon nanotube and graphene/graphene oxide biosensors · electrochemical biosensors using molecularly imprinted polymers · biomimetic sensors based on acoustic signal transduction · enzyme logic systems and digital biosensors based on the biocomputing concept · heat-transfer as a novel transducer principle · ultrasensitive surface plasmon resonance biosensors · magnetic biosensors and magnetic imaging devices
Author | : Joachim Wegener |
Publisher | : Springer Nature |
Total Pages | : 286 |
Release | : 2019-11-18 |
Genre | : Science |
ISBN | : 3030324338 |
This book is dedicated to label-free, non-invasive monitoring of cell-based assays and it comprises the most widely applied techniques. Each approach is described and critically evaluated by an expert in the field such that researchers get an overview on what is possible and where the limitations are. The book provides the theoretical basis for each technique as well as the most successful and exciting applications. Label-free bioanalytical techniques have been known for a long time as valuable tools to monitor adsorption processes at the solid-liquid interface in general – and biomolecular interaction analysis (BIA) in particular. The underlying concepts have been progressively transferred to the analysis of cell-based assays. The strength of these approaches is implicitly given with the name 'label-free': the readout is independent of any label, reagent or additive that contaminates the system under study and potentially affects its properties. Thus, label-free techniques provide an unbiased analytical perspective in the sense that the sample is not manipulated by additives but pure. They are commonly based on physical principles and read changes in integral physical properties of the sample like refractive index, conductivity, capacitance or elastic modulus to mention just a few. Even though it is not implied in the name, label-free approaches usually monitor the cells under study non-invasively meaning that the amplitude of the signal (e.g. electric field strength, mechanical elongation) that is used for the measurement is too low to interfere or affect. In contrast to label-based analytical techniques that are commonly restricted to a single reading at a predefined time point, label-free approaches allow for a continuous observation so that the dynamics of the biological system or reaction become accessible.
Author | : Alberto Pasquarelli |
Publisher | : Springer Nature |
Total Pages | : 342 |
Release | : 2021-10-29 |
Genre | : Medical |
ISBN | : 3030764699 |
This textbook describes the basic principles and mechanism of action of biosensor systems, and introduces readers to the various types of biosensors; from affinity biosensors to catalytic, optical and label-free biosensors, the most common systems are explained in detail. Dedicated advanced sections focus on biochips and genome sequencing methods as well as organs-on-a-chip. The textbook helps readers to understand the elementary components of biosensors, and to identify and illustrate each function in the biosensor information flow, from recognition to transduction and transmission. Furthermore, readers will receive guidance in critically analyzing published studies on biosensor research, helping them to develop appropriate concepts and independently propose their own solutions. The textbook is intended for master’s students in bioengineering, biophysics, biotechnology and pharmacology that need a solid grasp of biosensor system technologies and applications, as well as students in related medical technological fields.
Author | : |
Publisher | : Elsevier |
Total Pages | : 4609 |
Release | : 2017-06-03 |
Genre | : Technology & Engineering |
ISBN | : 0128032014 |
Comprehensive Medicinal Chemistry III, Eight Volume Set provides a contemporary and forward-looking critical analysis and summary of recent developments, emerging trends, and recently identified new areas where medicinal chemistry is having an impact. The discipline of medicinal chemistry continues to evolve as it adapts to new opportunities and strives to solve new challenges. These include drug targeting, biomolecular therapeutics, development of chemical biology tools, data collection and analysis, in silico models as predictors for biological properties, identification and validation of new targets, approaches to quantify target engagement, new methods for synthesis of drug candidates such as green chemistry, development of novel scaffolds for drug discovery, and the role of regulatory agencies in drug discovery. Reviews the strategies, technologies, principles, and applications of modern medicinal chemistry Provides a global and current perspective of today's drug discovery process and discusses the major therapeutic classes and targets Includes a unique collection of case studies and personal assays reviewing the discovery and development of key drugs
Author | : Donald Huddler |
Publisher | : John Wiley & Sons |
Total Pages | : 148 |
Release | : 2017-10-02 |
Genre | : Science |
ISBN | : 111909948X |
Applied Biophysics for Drug Discovery is a guide to new techniques and approaches to identifying and characterizing small molecules in early drug discovery. Biophysical methods are reasserting their utility in drug discovery and through a combination of the rise of fragment-based drug discovery and an increased focus on more nuanced characterisation of small molecule binding, these methods are playing an increasing role in discovery campaigns. This text emphasizes practical considerations for selecting and deploying core biophysical method, including but not limited to ITC, SPR, and both ligand-detected and protein-detected NMR. Topics covered include: • Design considerations in biophysical-based lead screening • Thermodynamic characterization of protein-compound interactions • Characterizing targets and screening reagents with HDX-MS • Microscale thermophoresis methods (MST) • Screening with Weak Affinity Chromatography • Methods to assess compound residence time • 1D-NMR methods for hit identification • Protein-based NMR methods for SAR development • Industry case studies integrating multiple biophysical methods This text is ideal for academic investigators and industry scientists planning hit characterization campaigns or designing and optimizing screening strategies.
Author | : Shimshon Belkin |
Publisher | : Springer Science & Business Media |
Total Pages | : 223 |
Release | : 2010-08-07 |
Genre | : Science |
ISBN | : 3642128521 |
Applications: - Applications of Microbial Cell Sensors, by Mifumi Shimomura-Shimizu and Isao Karube - Whole-Cell Bioreporters for the Detection of Bioavailable Metals, by Anu Hynninen and Marko Virta - Bacteriophage-Based Pathogen Detection, by Steven Ripp - Cell-Based Genotoxicity Testing, by Georg Reifferscheid and Sebastian Buchinger - Cytotoxicity and Genotoxicity Reporter Systems Based on the Use of Mammalian Cells, by Christa Baumstark-Khan, Christine E. Hellweg, and Günther Reitz - Live Cell Optical Sensing for High Throughput Applications, by Ye Fang - Cyanobacterial Bioreporters as Sensors of Nutrient Availability, by George S. Bullerjahn, Ramakrishna Boyanapalli, Mark J. Rozmarynowycz, and R. Michael L. McKay - Application of Microbial Bioreporters in Environmental Microbiology and Bioremediation, by E. E. Diplock , H. A. Alhadrami , and G. I. Paton