Arithmetic Geometry

Arithmetic Geometry
Author: Clay Mathematics Institute. Summer School
Publisher: American Mathematical Soc.
Total Pages: 570
Release: 2009
Genre: Mathematics
ISBN: 0821844768

Based on survey lectures given at the 2006 Clay Summer School on Arithmetic Geometry at the Mathematics Institute of the University of Gottingen, this tile is intended for graduate students and recent PhD's. It introduces readers to modern techniques and conjectures at the interface of number theory and algebraic geometry.

Algebraic Geometry

Algebraic Geometry
Author: M. Raynaud
Publisher: Springer
Total Pages: 539
Release: 2006-12-08
Genre: Mathematics
ISBN: 3540386769

Barsotti Symposium in Algebraic Geometry

Barsotti Symposium in Algebraic Geometry
Author: Valentino Cristante
Publisher: Academic Press
Total Pages: 306
Release: 2014-07-21
Genre: Mathematics
ISBN: 1483217620

Barsotti Symposium in Algebraic Geometry contains papers corresponding to the lectures given at the 1991 memorial meeting held in Abano Terme in honor of Iacopo Barsotti. This text reflects Barsotti's significant contributions in the field. This book is composed of 10 chapters and begins with a review of the centers of three-dimensional skylanin algebras. The succeeding chapters deal with the theoretical aspects of the Abelian varieties, Witt realization of p-Adic Barsotti-Tate Groups, and hypergeometric series and functions. These topics are followed by discussions of logarithmic spaces and the estimates for and inequalities among A-numbers. The closing chapter describes the moduli of Abelian varieties in positive characteristic. This book will be of value to mathematicians.

History Algebraic Geometry

History Algebraic Geometry
Author: Jean Dieudonné
Publisher: CRC Press
Total Pages: 202
Release: 1985-05-30
Genre: Mathematics
ISBN: 9780412993718

This book contains several fundamental ideas that are revived time after time in different guises, providing a better understanding of algebraic geometric phenomena. It shows how the field is enriched with loans from analysis and topology and from commutative algebra and homological algebra.

Number Fields and Function Fields – Two Parallel Worlds

Number Fields and Function Fields – Two Parallel Worlds
Author: Gerard van der Geer
Publisher: Springer Science & Business Media
Total Pages: 342
Release: 2005-09-14
Genre: Mathematics
ISBN: 9780817643973

Invited articles by leading researchers explore various aspects of the parallel worlds of function fields and number fields Topics range from Arakelov geometry, the search for a theory of varieties over the field with one element, via Eisenstein series to Drinfeld modules, and t-motives Aimed at graduate students, mathematicians, and researchers interested in geometry and arithmetic and their connections

K3 Surfaces and Their Moduli

K3 Surfaces and Their Moduli
Author: Carel Faber
Publisher: Birkhäuser
Total Pages: 403
Release: 2016-04-22
Genre: Mathematics
ISBN: 331929959X

This book provides an overview of the latest developments concerning the moduli of K3 surfaces. It is aimed at algebraic geometers, but is also of interest to number theorists and theoretical physicists, and continues the tradition of related volumes like “The Moduli Space of Curves” and “Moduli of Abelian Varieties,” which originated from conferences on the islands Texel and Schiermonnikoog and which have become classics. K3 surfaces and their moduli form a central topic in algebraic geometry and arithmetic geometry, and have recently attracted a lot of attention from both mathematicians and theoretical physicists. Advances in this field often result from mixing sophisticated techniques from algebraic geometry, lattice theory, number theory, and dynamical systems. The topic has received significant impetus due to recent breakthroughs on the Tate conjecture, the study of stability conditions and derived categories, and links with mirror symmetry and string theory. At the same time, the theory of irreducible holomorphic symplectic varieties, the higher dimensional analogues of K3 surfaces, has become a mainstream topic in algebraic geometry. Contributors: S. Boissière, A. Cattaneo, I. Dolgachev, V. Gritsenko, B. Hassett, G. Heckman, K. Hulek, S. Katz, A. Klemm, S. Kondo, C. Liedtke, D. Matsushita, M. Nieper-Wisskirchen, G. Oberdieck, K. Oguiso, R. Pandharipande, S. Rieken, A. Sarti, I. Shimada, R. P. Thomas, Y. Tschinkel, A. Verra, C. Voisin.