Astrophysical Jets and Their Engines

Astrophysical Jets and Their Engines
Author: Wolfgang Kundt
Publisher: Springer Science & Business Media
Total Pages: 265
Release: 2012-12-06
Genre: Science
ISBN: 9400939272

This volume is the documentation of the first Course on 'Neutron Stars, Active Galactic Nuclei and Jets', of an Erice School with a wide astro physical scope. The choice of the subject was made because of an apparent similari ty - stressed already at earlier meetings - of four classes of astrophy sical jet sources: Active Galactic Nuclei, Young Stellar Objects, Binary Neutron Stars and Binary White Dwarfs. They share important properties such as their morphology, high variability and large veloci ty gradients as well as - with some inference - their broad spectrum, hypersonic outflow and core/lobe power ratio. Despite this apparent similarity of the four source classes, quite different models have been put forward for their description: (i) The central engine of active galactic nuclei has been generally thought to be a black hole, in contrast to the central engine of young stellar objects and cometary nebulae which apparently is a pre-T-Tauri star, some six orders of magnitude less compact, and to the central engine of planetary nebulae which mayor may not be a binary white dwarf. (ii) The elongated lobes, or flow patterns, have been often interpreted as highly directional stellar wind outflows whereas in a few well mapped cases, the elongated flow appears to be 'pumped up' through a much narrower channel, or jet, both in the extragalactic and stellar sources.

Jets from Stars and Galactic Nuclei

Jets from Stars and Galactic Nuclei
Author: Wolfgang Kundt
Publisher: Springer
Total Pages: 300
Release: 2007-01-05
Genre: Science
ISBN: 3540499539

Jets are ubiquitous in the Universe, but ill-understood. Conservative books base their interpretations on focused stellar winds, ejected "bullets", black-hole central engines, and in-situ upgrading of electron energies via shocks. This volume, however, attempts a uniform interpretation of the bipolar-flow family, involving extremely relativistic pair plasma as the jet substance, and rotating magnets (possibly burning disks) as the central engines. Among the discussed sources are SS 433, YSO jets, planetary nebulae, our galactic center, and the class of extragalactic QSOs, both radio-loud and radio-quiet.

Virtual Astrophysical Jets

Virtual Astrophysical Jets
Author: Silvano Massaglia
Publisher: Springer Science & Business Media
Total Pages: 269
Release: 2013-06-05
Genre: Science
ISBN: 1402026641

These proceedings are the result of a three-day meeting held in Oogliani (Italy), on October 2-4 2003, whose title was "VIrtual Astrophysical Jets 2003". Our goal in convening this meeting was to gather some of the scientists among the most active in the field of numerical simulations and modelling of astrophysi cal jets. For keeping the participants close to the "real world", we also invited a few observers to give up-to-date reviews outlining the state-of-the-art of jet observations. The principal aim of the meeting was thus to present and critically discuss the state-of-the-art numerical simulations, analytical models and laboratory ex periments for reproducing the main aspects of astrophysical jets and compar ing them with observations. The discussion has been focused on the following topics: • Observations and intepretions of jets from young stars and AGNs, comparisons of models with observations; • MHO accelerations of jets: steady self-similar models, MHO numerical simula tions of time-dependent accelerations mechanisms; • Jet stability and interaction with the ambient: formation of knots in YSO jets, jet survival to instabilities, deceleration of relativistic jets in FRI sources, simulations of jets-IGM interactions, jets propagation and galaxy formation; • Numerical codes and their validation: relativistic MHO codes, comparisons among different numerical schemes, jets in the laboratory and code validation. These topics have been discussed intensively during the meeting, and the out come of these discussions is presented in this volume. The contributions have been divided in five sections.

Galaxy Formation and Mergers with Stars and Massive Black Holes

Galaxy Formation and Mergers with Stars and Massive Black Holes
Author: Chi-hun Kim
Publisher: Stanford University
Total Pages: 189
Release: 2011
Genre:
ISBN:

While mounting observational evidence suggests the coevolution of galaxies and their embedded massive black holes (MBHs), a comprehensive astrophysical understanding which incorporates both galaxies and MBHs has been missing. To tackle the nonlinear processes of galaxy formation, we develop a state-of-the-art numerical framework which self-consistently models the interplay between galactic components: dark matter, gas, stars, and MBHs. Utilizing this physically motivated tool, we present an investigation of a massive star-forming galaxy hosting a slowly growing MBH in a cosmological LCDM simulation. The MBH feedback heats the surrounding gas and locally suppresses star formation in the galactic inner core. In simulations of merging galaxies, the high-resolution adaptive mesh allows us to observe widespread starbursts via shock-induced star formation, and the interplay between the galaxies and their embedding medium. Fast growing MBHs in merging galaxies drive more frequent and powerful jets creating sizable bubbles at the galactic centers. We conclude that the interaction between the interstellar gas, stars and MBHs is critical in understanding the star formation history, black hole accretion history, and cosmological evolution of galaxies. Expanding upon our extensive experience in galactic simulations, we are well poised to apply this tool to other challenging, yet highly rewarding tasks in contemporary astrophysics, such as high-redshift quasar formation.

Astrophysical Jets and Beams

Astrophysical Jets and Beams
Author: Michael D. Smith
Publisher: Cambridge University Press
Total Pages: 241
Release: 2012-02-16
Genre: Science
ISBN: 0521834767

An up-to-date study of astrophysical jets that will appeal to students and researchers in all areas of astrophysics.