Jacobi-Like Forms, Pseudodifferential Operators, and Quasimodular Forms

Jacobi-Like Forms, Pseudodifferential Operators, and Quasimodular Forms
Author: YoungJu Choie
Publisher: Springer Nature
Total Pages: 307
Release: 2019-11-20
Genre: Mathematics
ISBN: 3030291235

This book explores various properties of quasimodular forms, especially their connections with Jacobi-like forms and automorphic pseudodifferential operators. The material that is essential to the subject is presented in sufficient detail, including necessary background on pseudodifferential operators, Lie algebras, etc., to make it accessible also to non-specialists. The book also covers a sufficiently broad range of illustrations of how the main themes of the book have occurred in various parts of mathematics to make it attractive to a wider audience. The book is intended for researchers and graduate students in number theory.

The 1-2-3 of Modular Forms

The 1-2-3 of Modular Forms
Author: Jan Hendrik Bruinier
Publisher: Springer Science & Business Media
Total Pages: 273
Release: 2008-02-10
Genre: Mathematics
ISBN: 3540741194

This book grew out of three series of lectures given at the summer school on "Modular Forms and their Applications" at the Sophus Lie Conference Center in Nordfjordeid in June 2004. The first series treats the classical one-variable theory of elliptic modular forms. The second series presents the theory of Hilbert modular forms in two variables and Hilbert modular surfaces. The third series gives an introduction to Siegel modular forms and discusses a conjecture by Harder. It also contains Harder's original manuscript with the conjecture. Each part treats a number of beautiful applications.

Algebraic Aspects of Integrable Systems

Algebraic Aspects of Integrable Systems
Author: A.S. Fokas
Publisher: Springer Science & Business Media
Total Pages: 370
Release: 1996-10-01
Genre: Mathematics
ISBN: 9780817638351

A collection of articles in memory of Irene Dorfman and her research in mathematical physics. Among the topics covered are: the Hamiltonian and bi-Hamiltonian nature of continuous and discrete integrable equations; the t-function construction; the r-matrix formulation of integrable systems; pseudo-differential operators and modular forms; master symmetries and the Bocher theorem; asymptotic integrability; the integrability of the equations of associativity; invariance under Laplace-darboux transformations; trace formulae of the Dirac and Schrodinger periodic operators; and certain canonical 1-forms.

Number Theory and Modular Forms

Number Theory and Modular Forms
Author: Bruce C. Berndt
Publisher: Springer Science & Business Media
Total Pages: 418
Release: 2003-11-30
Genre: Mathematics
ISBN: 9781402076152

Robert A. Rankin, one of the world's foremost authorities on modular forms and a founding editor of The Ramanujan Journal, died on January 27, 2001, at the age of 85. Rankin had broad interests and contributed fundamental papers in a wide variety of areas within number theory, geometry, analysis, and algebra. To commemorate Rankin's life and work, the editors have collected together 25 papers by several eminent mathematicians reflecting Rankin's extensive range of interests within number theory. Many of these papers reflect Rankin's primary focus in modular forms. It is the editors' fervent hope that mathematicians will be stimulated by these papers and gain a greater appreciation for Rankin's contributions to mathematics. This volume would be an inspiration to students and researchers in the areas of number theory and modular forms.

Motives, Quantum Field Theory, and Pseudodifferential Operators

Motives, Quantum Field Theory, and Pseudodifferential Operators
Author: Alan L. Carey
Publisher: American Mathematical Soc.
Total Pages: 361
Release: 2010
Genre: Mathematics
ISBN: 0821851993

This volume contains articles related to the conference ``Motives, Quantum Field Theory, and Pseudodifferntial Operators'' held at Boston University in June 2008, with partial support from the Clay Mathematics Institute, Boston University, and the National Science Foundation. There are deep but only partially understood connections between the three conference fields, so this book is intended both to explain the known connections and to offer directions for further research. In keeping with the organization of the conference, this book contains introductory lectures on each of the conference themes and research articles on current topics in these fields. The introductory lectures are suitable for graduate students and new Ph.D.'s in both mathematics and theoretical physics, as well as for senior researchers, since few mathematicians are expert in any two of the conference areas. Among the topics discussed in the introductory lectures are the appearance of multiple zeta values both as periods of motives and in Feynman integral calculations in perturbative QFT, the use of Hopf algebra techniques for renormalization in QFT, and regularized traces of pseudodifferential operators. The motivic interpretation of multiple zeta values points to a fundamental link between motives and QFT, and there are strong parallels between regularized traces and Feynman integral techniques. The research articles cover a range of topics in areas related to the conference themes, including geometric, Hopf algebraic, analytic, motivic and computational aspects of quantum field theory and mirror symmetry. There is no unifying theory of the conference areas at present, so the research articles present the current state of the art pointing towards such a unification.

Calabi-Yau Varieties: Arithmetic, Geometry and Physics

Calabi-Yau Varieties: Arithmetic, Geometry and Physics
Author: Radu Laza
Publisher: Springer
Total Pages: 542
Release: 2015-08-27
Genre: Mathematics
ISBN: 1493928309

This volume presents a lively introduction to the rapidly developing and vast research areas surrounding Calabi–Yau varieties and string theory. With its coverage of the various perspectives of a wide area of topics such as Hodge theory, Gross–Siebert program, moduli problems, toric approach, and arithmetic aspects, the book gives a comprehensive overview of the current streams of mathematical research in the area. The contributions in this book are based on lectures that took place during workshops with the following thematic titles: “Modular Forms Around String Theory,” “Enumerative Geometry and Calabi–Yau Varieties,” “Physics Around Mirror Symmetry,” “Hodge Theory in String Theory.” The book is ideal for graduate students and researchers learning about Calabi–Yau varieties as well as physics students and string theorists who wish to learn the mathematics behind these varieties.

The Theory of Jacobi Forms

The Theory of Jacobi Forms
Author: Martin Eichler
Publisher: Springer Science & Business Media
Total Pages: 156
Release: 2013-12-14
Genre: Mathematics
ISBN: 1468491628

The functions studied in this monogra9h are a cross between elliptic functions and modular forms in one variable. Specifically, we define a Jacobi form on SL (~) to be a holomorphic function 2 (JC = upper half-plane) satisfying the t\-10 transformation eouations 2Tiimcz· k CT +d a-r +b z) (1) ((cT+d) e cp(T, z) cp CT +d ' CT +d (2) rjl(T, z+h+]l) and having a Four·ier expansion of the form 00 e2Tii(nT +rz) (3) cp(T, z) 2: c(n, r) 2:: rE~ n=O 2 r ~ 4nm Here k and m are natural numbers, called the weight and index of rp, respectively. Note that th e function cp (T, 0) is an ordinary modular formofweight k, whileforfixed T thefunction z-+rjl( -r, z) isa function of the type normally used to embed the elliptic curve ~/~T + ~ into a projective space. If m= 0, then cp is independent of z and the definition reduces to the usual notion of modular forms in one variable. We give three other examples of situations where functions satisfying (1)-(3) arise classically: 1. Theta series. Let Q: ~-+ ~ be a positive definite integer valued quadratic form and B the associated bilinear form.

Codes And Modular Forms: A Dictionary

Codes And Modular Forms: A Dictionary
Author: Minjia Shi
Publisher: World Scientific
Total Pages: 232
Release: 2019-11-20
Genre: Mathematics
ISBN: 9811212937

There are connections between invariant theory and modular forms since the times of Felix Klein, in the 19th century, connections between codes and lattices since the 1960's. The aim of the book is to explore the interplay between codes and modular forms. Here modular form is understood in a wide sense (Jacobi forms, Siegel forms, Hilbert forms). Codes comprises not only linear spaces over finite fields but modules over some commutative rings. The connection between codes over finite fields and lattices has been well documented since the 1970s. Due to an avalanche of results on codes over rings since the 1990's there is a need for an update at book level.

An Open Door to Number Theory

An Open Door to Number Theory
Author: Duff Campbell
Publisher: American Mathematical Soc.
Total Pages: 297
Release: 2018-05-03
Genre: Mathematics
ISBN: 1470443481

A well-written, inviting textbook designed for a one-semester, junior-level course in elementary number theory. The intended audience will have had exposure to proof writing, but not necessarily to abstract algebra. That audience will be well prepared by this text for a second-semester course focusing on algebraic number theory. The approach throughout is geometric and intuitive; there are over 400 carefully designed exercises, which include a balance of calculations, conjectures, and proofs. There are also nine substantial student projects on topics not usually covered in a first-semester course, including Bernoulli numbers and polynomials, geometric approaches to number theory, the -adic numbers, quadratic extensions of the integers, and arithmetic generating functions.