Iutam Symposium On Nonlinear Analysis Of Fracture
Download Iutam Symposium On Nonlinear Analysis Of Fracture full books in PDF, epub, and Kindle. Read online free Iutam Symposium On Nonlinear Analysis Of Fracture ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : J.R. Willis |
Publisher | : Springer Science & Business Media |
Total Pages | : 398 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 9401156425 |
This volume constitutes the Proceedings of the IUTAM Symposium on 'Nonlinear Analysis of Fracture', held in Cambridge from 3rd to 7th Septem ber 1995. Its objective was to assess and place on record the current state of understanding of this important class of phenomena, from the standpoints of mathematics, materials science, physics and engineering. All fracture phenomena are nonlinear; the reason for inclusion of this qualification in the title was to reflect the intention that emphasis should be placed on distinctive aspects of nonlinearity, not only with regard to material consti tutive behaviour but also with regard to insights gained, particularly from the mathematics and physics communities, during the recent dramatic ad vances in understanding of nonlinear systems in general. The expertise represented in the Symposium was accordingly very wide, and many of the world's greatest authorities in their respective fields participated. The Symposium remained focussed on issues of practical significance for fracture phenomena, with concentration on aspects that are still im perfectly understood. The most significant unifying issue in this regard is that of scale: this theme was addressed from several perspectives. One important aspect is the problem of passing information on one scale up or down, as an input for analysis at another scale. Although this is not always the case, it may be that the microscopic process of fracture is understood in some particular class of materials.
Author | : |
Publisher | : |
Total Pages | : 0 |
Release | : 1997 |
Genre | : |
ISBN | : |
The Symposium remained focussed on issues of practical significance for fracture phenomena, with concentration on aspects that are still imperfectly understood. The most significant unifying issue in this regard is that of scale: this theme was addressed from several perspectives. One important aspect is the problem of passing information on one scale up or down, as an input for analysis at another scale. Although this is not always the case, it may be that the microscopic process of fracture is understood in some particular class of materials. The problem then becomes one of constructing an appropriate model at the macroscopic scale, that retains the essential features of the microscopic process but avoids unmanageable complexity. Dually, considering the problem from the macroscopic end, it is important to assess which particular aspects of the macroscopic stress field interact directly with the fracture process. In the simplest cases, the process is driven by the crack tip singularity in the macroscopic field; then, at least some problems relating to scale disappear. The focus of interest of course is in the regime where this 'singularity dominance' is not realised.
Author | : E. Lavendelis |
Publisher | : Springer Science & Business Media |
Total Pages | : 307 |
Release | : 2012-12-06 |
Genre | : Technology & Engineering |
ISBN | : 9401142297 |
The IUT AM / IFToMM Symposium on Synthesis of Nonlinear Dynamical Systems, held in Riga, Latvia, 24-28 August 1998, was one of a series of IUTAM sponsored symposia which focus on the theory and application of methods of nonlinear dynamics in mechanics. The symposium follows eighteen symposia on Analysis and Synthesis of Nonlinear Mechanical Oscillatory Systems held at Riga Technical University from 1971 to 1991 and in 1996 (prof. E. Lavendelis and Prof. M. Zakrzhevsky). Early in the late fifties and sixties Prof. J. G. Panovko organised several successful conferences in Riga on Nonlinear Oscillations. The participants in all these conferences and symposia (except 1996) were only from the ex-Soviet Union. This symposium, organised by the Institute of Mechanics of Riga Technical University, brought together scientists active in different fields of nonlinear dynamics. Selected scientists from 14 countries represented a wide range of expertise in' mechanics, from pure theoreticians to people primarily oriented towards application of nonlinear and chaotic dynamics and nonlinear oscillations. The goal of the symposium was to stimulate development of the theory of strongly nonlinear dynamical systems and its new applications in the fields of applied mechanics, engineering and other branches of science and technology.
Author | : Wolfgang Ehlers |
Publisher | : Springer Science & Business Media |
Total Pages | : 428 |
Release | : 2006-04-11 |
Genre | : Science |
ISBN | : 0306469537 |
During the last decades, continuum mechanics of porous materials has achieved great attention, since it allows for the consideration of the volumetrically coupled behaviour of the solid matrix deformation and the pore-fluid flow. Naturally, applications of porous media models range from civil and environmental engineering, where, e. g. , geote- nical problems like the consolidation problem are of great interest, via mechanical engineering, where, e. g. , the description of sinter materials or polymeric and metallic foams is a typical problem, to chemical and biomechanical engineering, where, e. g. , the complex structure of l- ing tissues is studied. Although these applications are principally very different, they basically fall into the category of multiphase materials, which can be described, on the macroscale, within the framework of the well-founded Theory of Porous Media (TPM). With the increasing power of computer hardware together with the rapidly decreasing computational costs, numerical solutions of complex coupled problems became possible and have been seriously investigated. However, since the quality of the numerical solutions strongly depends on the quality of the underlying physical model together with the experimental and mathematical possibilities to successfully determine realistic material parameters, a successful treatment of porous materials requires a joint consideration of continuum mechanics, experimental mechanics and numerical methods. In addition, micromechanical - vestigations and homogenization techniques are very helpful to increase the phenomenological understanding of such media.
Author | : H. Ulbrich |
Publisher | : Springer Science & Business Media |
Total Pages | : 414 |
Release | : 2006-01-28 |
Genre | : Technology & Engineering |
ISBN | : 1402041616 |
During the last decades, the growth of micro-electronics has reduced the cost of computing power to a level acceptable to industry and has made possible sophisticated control strategies suitable for many applications. Vibration c- trol is applied to all kinds of engineering systems to obtain the desired dynamic behavior, improved accuracy and increased reliability during operation. In this context, one can think of applications related to the control of structures’ vib- tion isolation, control of vehicle dynamics, noise control, control of machines and mechanisms and control of ?uid-structure-interaction. One could continue with this list for a long time. Research in the ?eld of vibration control is extremely comprehensive. Pr- lems that are typical for vibration control of nonlinear mechanisms and str- tures arise in the ?elds of modeling systems in such a way that the model is suitable for control design, to choose appropriate actuator and sensor locations and to select the actuators and sensors. Theobjective of the Symposium was to present anddiscuss methodsthat contribute to thesolution of such problems and to demonstrate the state of the art inthe ?eld shown by typical examples. The intention was to evaluate the limits of performance that can beachievedby controlling the dynamics, and to point out gaps in present research and give links for areas offuture research.Mainly, it brought together leading experts from quite different areas presenting theirpoints of view.
Author | : V.V. Aristov |
Publisher | : Springer Science & Business Media |
Total Pages | : 305 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 9401008663 |
This book is concerned with the methods of solving the nonlinear Boltz mann equation and of investigating its possibilities for describing some aerodynamic and physical problems. This monograph is a sequel to the book 'Numerical direct solutions of the kinetic Boltzmann equation' (in Russian) which was written with F. G. Tcheremissine and published by the Computing Center of the Russian Academy of Sciences some years ago. The main purposes of these two books are almost similar, namely, the study of nonequilibrium gas flows on the basis of direct integration of the kinetic equations. Nevertheless, there are some new aspects in the way this topic is treated in the present monograph. In particular, attention is paid to the advantages of the Boltzmann equation as a tool for considering nonequi librium, nonlinear processes. New fields of application of the Boltzmann equation are also described. Solutions of some problems are obtained with higher accuracy. Numerical procedures, such as parallel computing, are in vestigated for the first time. The structure and the contents of the present book have some com mon features with the monograph mentioned above, although there are new issues concerning the mathematical apparatus developed so that the Boltzmann equation can be applied for new physical problems. Because of this some chapters have been rewritten and checked again and some new chapters have been added.
Author | : Uri Kirsch |
Publisher | : Springer Science & Business Media |
Total Pages | : 308 |
Release | : 2008-02-24 |
Genre | : Technology & Engineering |
ISBN | : 1402081987 |
This book deals with various computational procedures for multiple repeated analyses (reanalysis) of structures, and presents them in a unified approach. It meets the need for a general text covering the basic concepts and methods as well as recent developments in this area. To clarify the presentation, many illustrative examples and numerical results are demonstrated. Previous books on structural analysis do not cover most of the material presented here.
Author | : S. Murakami |
Publisher | : Springer Science & Business Media |
Total Pages | : 541 |
Release | : 2013-11-27 |
Genre | : Science |
ISBN | : 940159628X |
These proceedings contain 48 innovative papers consolidating the development of creep research since 1990 and discussing the new horizons in this fundamental field of applied mechanics in the coming century. This volume is useful for researchers and graduate course students in the relevant fields.
Author | : S.D. Akbarov |
Publisher | : Springer Science & Business Media |
Total Pages | : 452 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 9401095043 |
This book is the frrst to focus on mechanical aspects of fibrous and layered composite material with curved structure. By mechanical aspects we mean statics, vibration, stability loss, elastic and fracture problems. By curved structures we mean that the reinforcing layers or fibres are not straight: they have some initial curvature, bending or distortion. This curvature may occur as a result of design, or as a consequence of some technological process. During the last two decades, we and our students have investigated problems relating to curved composites intensively. These investigations have allowed us to study stresses and strains in regions of a composite which are small compared to the curvature wavelength. These new, accurate, techniques were developed in the framework of continuum theories for piecewise homogeneous bodies. We use the exact equations of elasticity or viscoelasticity for anisotropic bodies, and consider linear and non-linear problems in the framework of this continuum theory as well as in the framework of the piecewise homogeneous model. For the latter the method of solution of related problems is proposed. We have focussed our attention on self-balanced stresses which arise from the curvature, but have provided sufficient information for the study of other effects. We assume that the reader is familiar with the theory of elasticity for anisotropic bodies, with partial differential equations and integral transformations, and also with the Finite Element Method.
Author | : J.P. Merlet |
Publisher | : Springer Science & Business Media |
Total Pages | : 418 |
Release | : 2006-07-01 |
Genre | : Technology & Engineering |
ISBN | : 1402041330 |
Parallel robots are closed-loop mechanisms presenting very good performances in terms of accuracy, velocity, rigidity and ability to manipulate large loads. They have been used in a large number of applications ranging from astronomy to flight simulators and are becoming increasingly popular in the field of machine-tool industry. This book presents a complete synthesis of the latest results on the possible mechanical architectures, analysis and synthesis of this type of mechanism. It is intended to be used by students (with over 150 exercises and numerous internet addresses), researchers (with over 650 references and anonymous ftp access to the code of some algorithms presented in this book) and engineers (for which practical results, mistakes to avoid, and applications are presented). Since the publication of the first edition (2000) there has been an impressive increase in terms of study and use of this kind of structure that are reported in this book. This second edition has been completely overhauled. The initial chapter on kinematics has been split into Inverse Kinematics and Direct Kinematics. A new chapter on calibration was added. The other chapters have also been rewritten to a large extent. The reference section has been updated to include around 45% new works that appeared after the first edition.