Isometric Embedding Of Riemannian Manifolds In Euclidean Spaces
Download Isometric Embedding Of Riemannian Manifolds In Euclidean Spaces full books in PDF, epub, and Kindle. Read online free Isometric Embedding Of Riemannian Manifolds In Euclidean Spaces ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Qing Han |
Publisher | : American Mathematical Soc. |
Total Pages | : 278 |
Release | : 2006 |
Genre | : Mathematics |
ISBN | : 0821840711 |
The question of the existence of isometric embeddings of Riemannian manifolds in Euclidean space is already more than a century old. This book presents, in a systematic way, results both local and global and in arbitrary dimension but with a focus on the isometric embedding of surfaces in ${\mathbb R}^3$. The emphasis is on those PDE techniques which are essential to the most important results of the last century. The classic results in this book include the Janet-Cartan Theorem, Nirenberg's solution of the Weyl problem, and Nash's Embedding Theorem, with a simplified proof by Gunther. The book also includes the main results from the past twenty years, both local and global, on the isometric embedding of surfaces in Euclidean 3-space. The work will be indispensable to researchers in the area. Moreover, the authors integrate the results and techniques into a unified whole, providing a good entry point into the area for advanced graduate students or anyone interested in this subject. The authors avoid what is technically complicated. Background knowledge is kept to an essential minimum: a one-semester course in differential geometry and a one-year course in partial differential equations.
Author | : Qing Han |
Publisher | : American Mathematical Society(RI) |
Total Pages | : 278 |
Release | : 2014-05-21 |
Genre | : MATHEMATICS |
ISBN | : 9781470413576 |
The question of the existence of isometric embeddings of Riemannian manifolds in Euclidean space is already more than a century old. This book presents, in a systematic way, results both local and global and in arbitrary dimension but with a focus on the isometric embedding of surfaces in ${\mathbb R} DEG
Author | : Robert Everist Greene |
Publisher | : American Mathematical Soc. |
Total Pages | : 69 |
Release | : 1970 |
Genre | : Embeddings (Mathematics) |
ISBN | : 0821812971 |
Author | : Steven Rosenberg |
Publisher | : Cambridge University Press |
Total Pages | : 190 |
Release | : 1997-01-09 |
Genre | : Mathematics |
ISBN | : 9780521468312 |
This text on analysis of Riemannian manifolds is aimed at students who have had a first course in differentiable manifolds.
Author | : Leonor Godinho |
Publisher | : Springer |
Total Pages | : 476 |
Release | : 2014-07-26 |
Genre | : Mathematics |
ISBN | : 3319086669 |
Unlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity. The first part is a concise and self-contained introduction to the basics of manifolds, differential forms, metrics and curvature. The second part studies applications to mechanics and relativity including the proofs of the Hawking and Penrose singularity theorems. It can be independently used for one-semester courses in either of these subjects. The main ideas are illustrated and further developed by numerous examples and over 300 exercises. Detailed solutions are provided for many of these exercises, making An Introduction to Riemannian Geometry ideal for self-study.
Author | : Stephanie Alexander |
Publisher | : Springer |
Total Pages | : 95 |
Release | : 2019-05-08 |
Genre | : Mathematics |
ISBN | : 3030053121 |
Aimed toward graduate students and research mathematicians, with minimal prerequisites this book provides a fresh take on Alexandrov geometry and explains the importance of CAT(0) geometry in geometric group theory. Beginning with an overview of fundamentals, definitions, and conventions, this book quickly moves forward to discuss the Reshetnyak gluing theorem and applies it to the billiards problems. The Hadamard–Cartan globalization theorem is explored and applied to construct exotic aspherical manifolds.
Author | : Bang-yen Chen |
Publisher | : World Scientific Publishing Company Incorporated |
Total Pages | : 467 |
Release | : 2015 |
Genre | : Mathematics |
ISBN | : 9789814616683 |
During the last four decades, there were numerous important developments on total mean curvature and the theory of finite type submanifolds. This unique and expanded second edition comprises a comprehensive account of the latest updates and new results that cover total mean curvature and submanifolds of finite type. The longstanding biharmonic conjecture of the author's and the generalized biharmonic conjectures are also presented in details. This book will be of use to graduate students and researchers in the field of geometry.
Author | : John M. Lee |
Publisher | : Springer Science & Business Media |
Total Pages | : 232 |
Release | : 2006-04-06 |
Genre | : Mathematics |
ISBN | : 0387227261 |
This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet’s Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.
Author | : Riccardo Benedetti |
Publisher | : Springer Science & Business Media |
Total Pages | : 343 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3642581587 |
Focussing on the geometry of hyperbolic manifolds, the aim here is to provide an exposition of some fundamental results, while being as self-contained, complete, detailed and unified as possible. Following some classical material on the hyperbolic space and the Teichmüller space, the book centers on the two fundamental results: Mostow's rigidity theorem (including a complete proof, following Gromov and Thurston) and Margulis' lemma. These then form the basis for studying Chabauty and geometric topology; a unified exposition is given of Wang's theorem and the Jorgensen-Thurston theory; and much space is devoted to the 3D case: a complete and elementary proof of the hyperbolic surgery theorem, based on the representation of three manifolds as glued ideal tetrahedra.
Author | : Bennett Chow |
Publisher | : American Mathematical Society, Science Press |
Total Pages | : 648 |
Release | : 2023-07-13 |
Genre | : Mathematics |
ISBN | : 1470473690 |
Ricci flow is a powerful analytic method for studying the geometry and topology of manifolds. This book is an introduction to Ricci flow for graduate students and mathematicians interested in working in the subject. To this end, the first chapter is a review of the relevant basics of Riemannian geometry. For the benefit of the student, the text includes a number of exercises of varying difficulty. The book also provides brief introductions to some general methods of geometric analysis and other geometric flows. Comparisons are made between the Ricci flow and the linear heat equation, mean curvature flow, and other geometric evolution equations whenever possible. Several topics of Hamilton's program are covered, such as short time existence, Harnack inequalities, Ricci solitons, Perelman's no local collapsing theorem, singularity analysis, and ancient solutions. A major direction in Ricci flow, via Hamilton's and Perelman's works, is the use of Ricci flow as an approach to solving the Poincaré conjecture and Thurston's geometrization conjecture.