Iron Cycle In Oceans
Download Iron Cycle In Oceans full books in PDF, epub, and Kindle. Read online free Iron Cycle In Oceans ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Stéphane Blain |
Publisher | : John Wiley & Sons |
Total Pages | : 138 |
Release | : 2016-11-22 |
Genre | : Science |
ISBN | : 1119136865 |
This book presents an up to date view of iron biogeochemistry in the ocean. It encompasses the description of iron speciation, the analytical methods used to measure the different iron forms in seawater and the different iron biogeochemical models.
Author | : Astrid Sigel |
Publisher | : CRC Press |
Total Pages | : 826 |
Release | : 1998-01-09 |
Genre | : Science |
ISBN | : 9780824799847 |
"Volume 35 covers the biological cycling of iron in oceans; the transport of iron in microorganisms, fungi, and plants; the roles and properties of siderophores; the regulation of iron transport and uptake in animals, plants, and microorganisms, and more. "
Author | : Stéphane Blain |
Publisher | : John Wiley & Sons |
Total Pages | : 132 |
Release | : 2016-12-19 |
Genre | : Science |
ISBN | : 1848218141 |
This book presents an up to date view of iron biogeochemistry in the ocean. It encompasses the description of iron speciation, the analytical methods used to measure the different iron forms in seawater and the different iron biogeochemical models.
Author | : Edward J. Carpenter |
Publisher | : Elsevier |
Total Pages | : 919 |
Release | : 2013-10-22 |
Genre | : Science |
ISBN | : 1483288293 |
Nitrogen in the Marine Environment provides information pertinent to the many aspects of the nitrogen cycle. This book presents the advances in ocean productivity research, with emphasis on the role of microbes in nitrogen transformations with excursions to higher trophic levels. Organized into 24 chapters, this book begins with an overview of the abundance and distribution of the various forms of nitrogen in a number of estuaries. This text then provides a comparison of the nitrogen cycling of various ecosystems within the marine environment. Other chapters consider chemical distributions and methodology as an aid to those entering the field. This book discusses as well the enzymology of the initial steps of inorganic nitrogen assimilation. The final chapter deals with the philosophy and application of modeling as an investigative method in basic research on nitrogen dynamics in coastal and open-ocean marine environments. This book is a valuable resource for plant biochemists, microbiologists, aquatic ecologists, and bacteriologists.
Author | : Andrew H. Knoll |
Publisher | : John Wiley & Sons |
Total Pages | : 876 |
Release | : 2012-03-30 |
Genre | : Science |
ISBN | : 1118280881 |
2012 PROSE Award, Earth Science: Honorable Mention For more than fifty years scientists have been concerned with the interrelationships of Earth and life. Over the past decade, however, geobiology, the name given to this interdisciplinary endeavour, has emerged as an exciting and rapidly expanding field, fuelled by advances in molecular phylogeny, a new microbial ecology made possible by the molecular revolution, increasingly sophisticated new techniques for imaging and determining chemical compositions of solids on nanometer scales, the development of non-traditional stable isotope analyses, Earth systems science and Earth system history, and accelerating exploration of other planets within and beyond our solar system. Geobiology has many faces: there is the microbial weathering of minerals, bacterial and skeletal biomineralization, the roles of autotrophic and heterotrophic metabolisms in elemental cycling, the redox history in the oceans and its relationship to evolution and the origin of life itself.. This book is the first to set out a coherent set of principles that underpin geobiology, and will act as a foundational text that will speed the dissemination of those principles. The chapters have been carefully chosen to provide intellectually rich but concise summaries of key topics, and each has been written by one or more of the leading scientists in that field.. Fundamentals of Geobiology is aimed at advanced undergraduates and graduates in the Earth and biological sciences, and to the growing number of scientists worldwide who have an interest in this burgeoning new discipline. Additional resources for this book can be found at: http://www.wiley.com/go/knoll/geobiology.
Author | : Michael J.R. Fasham |
Publisher | : Springer Science & Business Media |
Total Pages | : 324 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 3642558445 |
Oceans account for 50% of the anthropogenic CO2 released into the atmosphere. During the past 15 years an international programme, the Joint Global Ocean Flux Study (JGOFS), has been studying the ocean carbon cycle to quantify and model the biological and physical processes whereby CO2 is pumped from the ocean's surface to the depths of the ocean, where it can remain for hundreds of years. This project is one of the largest multi-disciplinary studies of the oceans ever carried out and this book synthesises the results. It covers all aspects of the topic ranging from air-sea exchange with CO2, the role of physical mixing, the uptake of CO2 by marine algae, the fluxes of carbon and nitrogen through the marine food chain to the subsequent export of carbon to the depths of the ocean. Special emphasis is laid on predicting future climatic change.
Author | : Jonathan P. Zehr |
Publisher | : Springer Nature |
Total Pages | : 191 |
Release | : 2021-04-02 |
Genre | : Science |
ISBN | : 303067746X |
This book aims to serve as a centralized reference document for students and researchers interested in aspects of marine nitrogen fixation. Although nitrogen is a critical element in both terrestrial and aquatic productivity, and nitrogen fixation is a key process that balances losses due to denitrification in both environments, most resources on the subject focuses on the biochemistry and microbiology of such processes and the organisms involved in the terrestrial environment on symbiosis in terrestrial systems, or on largely ecological aspects in the marine environment. This book is intended to provide an overview of N2 fixation research for marine researchers, while providing a reference on marine research for researchers in other fields, including terrestrial N2 fixation. This book bridges this knowledge gap for both specialists and non-experts, and provides an in-depth overview of the important aspects of nitrogen fixation as it relates to the marine environment. This resource will be useful for researchers in the specialized field, but also useful for scientists in other disciplines who are interested in the topic. It would provide a possible text for upper division classes or graduate seminars.
Author | : David Emerson |
Publisher | : Frontiers E-books |
Total Pages | : 217 |
Release | : |
Genre | : |
ISBN | : 2889190749 |
In the past 15 years, there has been steady growth in work relating to the microbial iron cycle. It is now well established that in anaerobic environments coupling of organic matter utilization to Fe reduction is a major pathway for anaerobic respiration. In iron-rich circumneutral environments that exist at oxic-anoxic boundaries, significant progress has been made in demonstrating that unique groups of microbes can grow either aerobically or anaerobically using Fe as a primary energy source. Likewise, in high iron acidic environments, progress has been made in the study of communities of microbes that oxidize iron, and in understanding the details of how certain of these organisms gain energy from Fe-oxidation. On the iron scarcity side, it is now appreciated that in large areas of the open ocean Fe is a key limiting nutrient; thus, a great deal of research is going into understanding the strategies microbial cells, principally phytoplankton, use to acquire iron, and how the iron cycle may impact other nutrient cycles. Finally, due to its abundance, iron has played an important role in the evolution of Earth’s primary biogeochemical cycles through time. The aim of this Research Topic is to gather contributions from scientists working in diverse disciplines who have common interests in iron cycling at the process level, and at the organismal level, both from the perspective of Fe as an energy source, or as a limiting nutrient for primary productivity in the ocean. The range of disciplines may include: geomicrobiologists, microbial ecologists, microbial physiologists, biological oceanographers, and biogeochemists. Articles can be original research, techniques, reviews, or synthesis papers. An overarching goal is to demonstrate the environmental breadth of the iron cycle, and foster understanding between different scientific communities who may not always be aware of one another’s work.
Author | : E.J. Carpenter |
Publisher | : Springer Science & Business Media |
Total Pages | : 355 |
Release | : 2013-03-09 |
Genre | : Science |
ISBN | : 9401579776 |
Planktonic marine cyanobacteria are abundant and significant in the biogeochemistry of the sea. This volume focuses on the filamentous cyanobacteria, particularly those in the genus Trichodesmium which are common in tropical and subtropical seas. A portion of this book also concerns bloom-forming cyanobacteria in the Baltic Sea area. Filamentous cyanobacteria are important as primary producers and for the fixation of atmospheric nitrogen and thus are significant in global cycling of both of these elements. In recent years, through the application of new techniques and intensive multi-disciplinary research programs, progress has been made in understanding both the biology of these cyanobacteria and their place in the marine food web. A broad range of topics is covered in this book, ranging from molecular biology, physiology, ultrastructure, enzyme localization, toxicology, remote sensing, buoyancy, herbivory and the ecology of these organisms in the marine food web. This volume is an outgrowth of a NATO-sponsored meeting held in May 1991 in Bamberg, Germany, and represents the latest synthesis on these marine phytoplankters.
Author | : National Research Council |
Publisher | : National Academies Press |
Total Pages | : 200 |
Release | : 2010-09-14 |
Genre | : Science |
ISBN | : 030916155X |
The ocean has absorbed a significant portion of all human-made carbon dioxide emissions. This benefits human society by moderating the rate of climate change, but also causes unprecedented changes to ocean chemistry. Carbon dioxide taken up by the ocean decreases the pH of the water and leads to a suite of chemical changes collectively known as ocean acidification. The long term consequences of ocean acidification are not known, but are expected to result in changes to many ecosystems and the services they provide to society. Ocean Acidification: A National Strategy to Meet the Challenges of a Changing Ocean reviews the current state of knowledge, explores gaps in understanding, and identifies several key findings. Like climate change, ocean acidification is a growing global problem that will intensify with continued CO2 emissions and has the potential to change marine ecosystems and affect benefits to society. The federal government has taken positive initial steps by developing a national ocean acidification program, but more information is needed to fully understand and address the threat that ocean acidification may pose to marine ecosystems and the services they provide. In addition, a global observation network of chemical and biological sensors is needed to monitor changes in ocean conditions attributable to acidification.