Iron Based Superconducting Thin Films
Download Iron Based Superconducting Thin Films full books in PDF, epub, and Kindle. Read online free Iron Based Superconducting Thin Films ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Silvia Haindl |
Publisher | : Springer Nature |
Total Pages | : 403 |
Release | : 2021-06-27 |
Genre | : Technology & Engineering |
ISBN | : 3030751325 |
This book provides a modern introduction to the growth, characterization, and physics of iron-based superconducting thin films. Iron pnictide and iron chalcogenide compounds have become intensively studied key materials in condensed matter physics due to their potential for high temperature superconductivity. With maximum critical temperatures of around 60 K, the new superconductors rank first after the celebrated cuprates, and the latest announcements on ultrathin films promise even more. Thin film synthesis of these superconductors began in 2008 immediately after their discovery, and this growing research area has seen remarkable progress up to the present day, especially with regard to the iron chalcogenides FeSe and FeSe1-xTex, the iron pnictide BaFe2-xCoxAs2 and iron-oxyarsenides. This essential volume provides comprehensive, state-of-the-art coverage of iron-based superconducting thin films in topical chapters with detailed information on thin film synthesis and growth, analytical film characterization, interfaces, and various aspects on physics and materials properties. Current efforts towards technological applications and functional films are outlined and discussed. The development and latest results for monolayer FeSe films are also presented. This book serves as a key reference for students, lecturers, industry engineers, and academic researchers who would like to gain an overview of this complex and growing research area.
Author | : Nan Lin Wang |
Publisher | : CRC Press |
Total Pages | : 554 |
Release | : 2012-11-19 |
Genre | : Science |
ISBN | : 9814303232 |
From fundamental physics point of view, iron-based superconductors have properties that are more amenable to band structural calculations. This book reviews the progress made in this fascinating field. With contributions from leading experts, the book provides a guide to understanding materials, physical properties, and superconductivity mechanism
Author | : Paolo Mele |
Publisher | : Springer Nature |
Total Pages | : 379 |
Release | : 2019-08-21 |
Genre | : Technology & Engineering |
ISBN | : 3030233030 |
This book provides readers with a comprehensive overview of the science of superconducting materials. It serves as a fundamental information source on the actual techniques and methodologies involved in superconducting materials growth, characterization and processing. This book includes coverage of several categories of medium and high-temperature superconducting materials: cuprate oxides, borides, and iron-based chalcogenides and pnictides. Provides a single-source reference on superconducting materials growth, characterization and processing; Bridges the gap between materials science and applications of superconductors; Discusses several categories of superconducting materials such as cuprate oxides, borides, and iron-based chalcogenides and pnictides; Covers synthesis, characterization, and processing of superconducting materials, as well as the nanoengineering approach to tailor the properties of the used materials at the nanoscale level.
Author | : Peter D. Johnson |
Publisher | : Springer |
Total Pages | : 452 |
Release | : 2015-01-06 |
Genre | : Technology & Engineering |
ISBN | : 3319112546 |
This volume presents an in-depth review of experimental and theoretical studies on the newly discovered Fe-based superconductors. Following the Introduction, which places iron-based superconductors in the context of other unconventional superconductors, the book is divided into three sections covering sample growth, experimental characterization, and theoretical understanding. To understand the complex structure-property relationships of these materials, results from a wide range of experimental techniques and theoretical approaches are described that probe the electronic and magnetic properties and offer insight into either itinerant or localized electronic states. The extensive reference lists provide a bridge to further reading. Iron-Based Superconductivity is essential reading for advanced undergraduate and graduate students as well as researchers active in the fields of condensed matter physics and materials science in general, particularly those with an interest in correlated metals, frustrated spin systems, superconductivity, and competing orders.
Author | : Jianguo Zhu |
Publisher | : World Scientific |
Total Pages | : 706 |
Release | : 2021-06-18 |
Genre | : Science |
ISBN | : 9811224005 |
Thin films have an extremely broad range of applications from electronics and optics to new materials and devices. Collaborative and multidisciplinary efforts from physicists, materials scientists, engineers and others have established and advanced a field with key pillars constituting (i) the synthesis and processing of thin films, (ii) the understanding of physical properties in relation to the nanometer scale, (iii) the design and fabrication of nano-devices or devices with thin film materials as building blocks, and (iv) the design and construction of novel tools for characterization of thin films.Against the backdrop of the increasingly interdisciplinary field, this book sets off to inform the basics of thin film physics and thin film devices. Readers are systematically introduced to the synthesis, processing and application of thin films; they will also study the formation of thin films, their structure and defects, and their various properties — mechanical, electrical, semiconducting, magnetic, and superconducting. With a primary focus on inorganic thin film materials, the book also ventures on organic materials such as self-assembled monolayers and Langmuir-Blodgett films.This book will be effective as a teaching or reference material in the various disciplines, ranging from Materials Science and Engineering, Electronic Science and Engineering, Electronic Materials and Components, Semiconductor Physics and Devices, to Applied Physics and more. The original Chinese publication has been instrumental in this purpose across many Chinese universities and colleges.
Author | : Qisi Wang |
Publisher | : Frontiers Media SA |
Total Pages | : 120 |
Release | : 2023-02-15 |
Genre | : Science |
ISBN | : 2832514707 |
Author | : David A. Cardwell |
Publisher | : CRC Press |
Total Pages | : 881 |
Release | : 2022-07-05 |
Genre | : Science |
ISBN | : 1000342301 |
This is the last of three volumes of the extensively revised and updated second edition of the Handbook of Superconductivity. The past twenty years have seen rapid progress in superconducting materials, which exhibit one of the most remarkable physical states of matter ever to be discovered. Superconductivity brings quantum mechanics to the scale of the everyday world. Viable applications of superconductors rely fundamentally on an understanding of these intriguing phenomena and the availability of a range of materials with bespoke properties to meet practical needs. While the first volume covers fundamentals and various classes of materials, the second addresses processing of these into various shapes and configurations needed for applications, and ends with chapters on refrigeration methods necessary to attain the superconducting state and the desired performance. This third volume starts with a wide range of methods permitting one to characterize both the materials and various end products of processing. Subsequently, diverse classes of both large scale and electronic applications are described. Volume 3 ends with a glossary relevant to all three volumes. Key Features: Covers the depth and breadth of the field Includes contributions from leading academics and industry professionals across the world Provides hands-on familiarity with the characterization methods and offers descriptions of representative examples of practical applications A comprehensive reference, the handbook is suitable for both graduate students and practitioners in experimental physics, materials science, and multiple engineering disciplines, including electronic and electrical, chemical, mechanical, metallurgy and others.
Author | : Jandke, Jasmin Maria |
Publisher | : KIT Scientific Publishing |
Total Pages | : 242 |
Release | : 2019-05-02 |
Genre | : Physics |
ISBN | : 3731507471 |
Within this work, the pairing mechanism of conventional (Pb) and unconventional superconductors (SrFe2(As1-xPx )2 , FeSe, FeSe/STO) was investigated experimentally by means of elastic and inelastic tunneling spectroscopy at temperatures down to 30 mK. The distinction between elastic and inelastic contributions to tunneling data was elaborated. The results help to identify conventional (phonon-mediated) and unconventional (e.g. spin-?uctuation mediated) superconductivity.
Author | : |
Publisher | : Elsevier |
Total Pages | : 292 |
Release | : 2018-11-20 |
Genre | : Science |
ISBN | : 0128139358 |
Nano-sized Multifunctional Materials: Synthesis, Properties and Applications explores how materials can be down-scaled to nanometer-size in order to tailor and control properties. These advanced, low-dimensional materials, ranging from quantum dots and nanoparticles, to ultra-thin films develop multifunctional properties. As well as demonstrating how down-scaling to nano-size can make materials multifunctional, chapters also show how this technology can be applied in electronics, medicine, energy and in the environment. This fresh approach in materials research will provide a valuable resource for materials scientists, materials engineers, chemists, physicists and bioengineers who want to learn more on the special properties of nano-sized materials. - Outlines the major synthesis chemical process and problems of advanced nanomaterials - Shows how multifunctional nanomaterials can be practically used in biomedical area, nanomedicine, and in the treatment of pollutants - Demonstrates how the properties of a variety of materials can be engineered by downscaling them to nano size
Author | : Aliaksei Charnukha |
Publisher | : Springer Science & Business Media |
Total Pages | : 139 |
Release | : 2013-09-12 |
Genre | : Technology & Engineering |
ISBN | : 3319011928 |
This thesis combines highly accurate optical spectroscopy data on the recently discovered iron-based high-temperature superconductors with an incisive theoretical analysis. Three outstanding results are reported: (1) The superconductivity-induced modification of the far-infrared conductivity of an iron arsenide with minimal chemical disorder is quantitatively described by means of a strong-coupling theory for spin fluctuation mediated Cooper pairing. The formalism developed in this thesis also describes prior spectroscopic data on more disordered compounds. (2) The same materials exhibit a sharp superconductivity-induced anomaly for photon energies around 2.5 eV, two orders of magnitude larger than the superconducting energy gap. The author provides a qualitative interpretation of this unprecedented observation, which is based on the multiband nature of the superconducting state. (3) The thesis also develops a comprehensive description of a superconducting, yet optically transparent iron chalcogenide compound. The author shows that this highly unusual behavior can be explained as a result of the nanoscopic coexistence of insulating and superconducting phases, and he uses a combination of two complementary experimental methods - scanning near-field optical microscopy and low-energy muon spin rotation - to directly image the phase coexistence and quantitatively determine the phase composition. These data have important implications for the interpretation of data from other experimental probes.