Nonlinear Meta-Optics

Nonlinear Meta-Optics
Author: Costantino De Angelis
Publisher: CRC Press
Total Pages: 345
Release: 2020-05-20
Genre: Technology & Engineering
ISBN: 1351269755

This book addresses fabrication as well as characterization and modeling of semiconductor nanostructures in the optical regime, with a focus on nonlinear effects. The visible range as well as near and far infrared spectral region will be considered with a view to different envisaged applications. The book covers the current key challenges of the research in the area, including: exploiting new material platforms, fully extending the device operation into the nonlinear regime, adding re-configurability to the envisaged devices and proposing new modeling tools to help in conceiving new functionalities. • Explores several topics in the field of semiconductor nonlinear nanophotonics, including fabrication, characterization and modeling of semiconductor nanostructures in the optical regime, with a focus on nonlinear effects • Describes the research challenges in the field of optical metasurfaces in the nonlinear regime • Reviews the use and achievements of all-dielectric nanoantennas for strengthening the nonlinear optical response • Describes both theoretical and experimental aspects of photonic devices based on semiconductor optical nanoantennas and metasurfaces • Gathers contributions from several leading groups in this research field to provide a thorough and complete overview of the current state of the art in the field of semiconductor nonlinear nanophotonics Costantino De Angelis has been full professor of electromagnetic fields at the University of Brescia since 1998. He is an OSA Fellow and has been responsible for several university research contracts in the last 20 years within Europe, the United States, and Italy. His technical interests are in optical antennas and nanophotonics. He is the author of over 150 peer-reviewed scientific journal articles. Giuseppe Leo has been a full professor in physics at Paris Diderot University since 2004, and in charge of the nonlinear devices group of MPQ Laboratory since 2006. His research areas include nonlinear optics, micro- and nano-photonics, and optoelectronics, with a focus on AlGaAs platform. He has coordinated several research programs and coauthored 100 peer-reviewed journal articles, 200 conference papers, 10 book chapters and also has four patents. Dragomir Neshev is a professor in physics and the leader of the experimental photonics group in the Nonlinear Physics Centre at Australian National University (ANU). His activities span over several branches of optics, including nonlinear periodic structures, singular optics, plasmonics, and photonic metamaterials. He has coauthored 200 publications in international peer-reviewed scientific journals.

Organic Photovoltaics

Organic Photovoltaics
Author: Christoph Joseph Brabec
Publisher: Springer Science & Business Media
Total Pages: 311
Release: 2013-11-21
Genre: Science
ISBN: 3662051877

The present volume describes and explains the fundamentals of organic/plastic solar cells in a manner accessible to both researchers and students. It provides an up-to-date and comprehensive account of these materials and corresponding devices, which will play a key role in future solar energy systems.

Excitons in Confined Systems

Excitons in Confined Systems
Author: Rodolfo Del Sole
Publisher: Springer
Total Pages: 270
Release: 1988
Genre: Technology & Engineering
ISBN:

This book contains the proceedings of the International Meeting on Confined Excitons held in Rome in April 1987. The aim of the meeting was to discuss excitons confined in a variety of systems from semi-infinite solids to quantum wells. In the part on excitons in semi-infinite solids, the long-running discussion on exciton reflectance, involving the concepts of additional boundary conditions and the dead layer, is summarized and extended. The papers on excitons in thin films and in "thick" quantum wells bridge the gap between semi-infinite semiconductors and the usual quantum wells, presenting interesting results on exciton quantization. The third part reports many new results in the recently developed area of excitons in quantum wells and on the very new topic of excitons in quantum wires. Knowledge of the quantum well properties is an important aspect in the determination of exciton states, so tutorial articles on the growth and band structure of quantum wells are also included.