Na-ion Batteries

Na-ion Batteries
Author:
Publisher: John Wiley & Sons
Total Pages: 386
Release: 2021-05-11
Genre: Science
ISBN: 1789450136

This book covers both the fundamental and applied aspects of advanced Na-ion batteries (NIB) which have proven to be a potential challenger to Li-ion batteries. Both the chemistry and design of positive and negative electrode materials are examined. In NIB, the electrolyte is also a crucial part of the batteries and the recent research, showing a possible alternative to classical electrolytes – with the development of ionic liquid-based electrolytes – is also explored. Cycling performance in NIB is also strongly associated with the quality of the electrode-electrolyte interface, where electrolyte degradation takes place; thus, Na-ion Batteries details the recent achievements in furthering knowledge of this interface. Finally, as the ultimate goal is commercialization of this new electrical storage technology, the last chapters are dedicated to the industrial point of view, given by two startup companies, who developed two different NIB chemistries for complementary applications and markets.

Potassium-ion Batteries

Potassium-ion Batteries
Author: Inamuddin
Publisher: John Wiley & Sons
Total Pages: 432
Release: 2020-04-21
Genre: Technology & Engineering
ISBN: 1119661390

Battery technology is constantly changing, and the concepts and applications of these changes are rapidly becoming increasingly more important as more and more industries and individuals continue to make “greener” choices in their energy sources. As global dependence on fossil fuels slowly wanes, there is a heavier and heavier importance placed on cleaner power sources and methods for storing and transporting that power. Battery technology is a huge part of this global energy revolution. Potassium-ion batteries were first introduced to the world for energy storage in 2004, over two decades after the invention of lithium-ion batteries. Potassium-ion (or “K-ion”) batteries have many advantages, including low cost, long cycle life, high energy density, safety, and reliability. Potassium-ion batteries are the potential alternative to lithium-ion batteries, fueling a new direction of energy storage research in many applications and across industries. Potassium-ion Batteries: Materials and Applications explores the concepts, mechanisms, and applications of the next-generation energy technology of potassium-ion batteries. Also included is an in-depth overview of energy storage materials and electrolytes. This is the first book on this technology and serves as a reference guide for electrochemists, chemical engineers, students, research scholars, faculty, and R&D professionals who are working in electrochemistry, solid-state science, material science, ionics, power sources, and renewable energy storage fields.

Towards Next Generation Energy Storage Technologies

Towards Next Generation Energy Storage Technologies
Author: Minghua Chen
Publisher: John Wiley & Sons
Total Pages: 482
Release: 2024-12-23
Genre: Technology & Engineering
ISBN: 3527353313

summarizes the fundamental energy storage mechanisms, critical achievements, and critical challenges from the view of practical application.

Chemical Thermodynamics: Advanced Applications

Chemical Thermodynamics: Advanced Applications
Author: J. Bevan Ott
Publisher: Elsevier
Total Pages: 465
Release: 2000-06-16
Genre: Science
ISBN: 0080500994

This book is an excellent companion to Chemical Thermodynamics: Principles and Applications. Together they make a complete reference set for the practicing scientist. This volume extends the range of topics and applications to ones that are not usually covered in a beginning thermodynamics text. In a sense, the book covers a "middle ground" between the basic principles developed in a beginning thermodynamics textbook, and the very specialized applications that are a part of an ongoing research project. As such, it could prove invaluable to the practicing scientist who needs to apply thermodynamic relationships to aid in the understanding of the chemical process under consideration. The writing style in this volume remains informal, but more technical than in Principles and Applications. It starts with Chapter 11, whichsummarizes the thermodynamic relationships developed in this earlier volume. For those who want or need more detail, references are given tothe sections in Principles and Applications where one could go to learn more about the development, limitations, and conditions where these equations apply. This is the only place where Advanced Applications ties back to the previous volume. Chapter 11 can serve as a review of the fundamental thermodynamic equations that are necessary for the more sophisticated applications described in the remainder of this book. This may be all that is necessary for the practicing scientist who has been away from the field for some time and needs some review. The remainder of this book applies thermodynamics to the description of a variety of problems. The topics covered are those that are probably of the most fundamental and broadest interest. Throughout the book, examples of "real" systems are used as much as possible. This is in contrast to many books where "generic" examples are used almost exclusively. A complete set of references to all sources of data and to supplementary reading sources is included. Problems are given at the end of each chapter. This makes the book ideally suited for use as a textbook in an advanced topics course in chemical thermodynamics. - An excellent review of thermodynamic principles and mathematical relationships along with references to the relevant sections in Principles and Applications where these equations are developed - Applications of thermodynamics in a wide variety of chemical processes, including phase equilibria, chemical equilibrium, properties of mixtures, and surface chemistry - Case-study approach to demonstrate the application of thermodynamics to biochemical, geochemical, and industrial processes - Applications at the "cutting edge" of thermodynamics - Examples and problems to assist in learning - Includes a complete set of references to all literature sources

Battery Technologies

Battery Technologies
Author: Jianmin Ma
Publisher: John Wiley & Sons
Total Pages: 386
Release: 2021-12-28
Genre: Technology & Engineering
ISBN: 3527348581

Battery Technologies A state-of-the-art exploration of modern battery technology In Battery Technologies: Materials and Components, distinguished researchers Dr. Jianmin Ma delivers a comprehensive and robust overview of battery technology and new and emerging technologies related to lithium, aluminum, dual-ion, flexible, and biodegradable batteries. The book offers practical information on electrode materials, electrolytes, and the construction of battery systems. It also considers potential approaches to some of the primary challenges facing battery designers and manufacturers today. Battery Technologies: Materials and Components provides readers with: A thorough introduction to the lithium-ion battery, including cathode and anode materials, electrolytes, and binders Comprehensive explorations of lithium-oxygen batteries, including battery systems, catalysts, and anodes Practical discussions of redox flow batteries, aqueous batteries, biodegradable batteries, and flexible batteries In-depth examinations of dual-ion batteries, aluminum ion batteries, and zinc-oxygen batteries Perfect for inorganic chemists, materials scientists, and electrochemists, Battery Technologies: Materials and Components will also earn a place in the libraries of catalytic and polymer chemists seeking a one-stop resource on battery technology.

Electrode Materials for Energy Storage and Conversion

Electrode Materials for Energy Storage and Conversion
Author: Mesfin A. Kebede
Publisher: CRC Press
Total Pages: 518
Release: 2021-11-17
Genre: Science
ISBN: 1000457869

This book provides a comprehensive overview of the latest developments and materials used in electrochemical energy storage and conversion devices, including lithium-ion batteries, sodium-ion batteries, zinc-ion batteries, supercapacitors and conversion materials for solar and fuel cells. Chapters introduce the technologies behind each material, in addition to the fundamental principles of the devices, and their wider impact and contribution to the field. This book will be an ideal reference for researchers and individuals working in industries based on energy storage and conversion technologies across physics, chemistry and engineering. FEATURES Edited by established authorities, with chapter contributions from subject-area specialists Provides a comprehensive review of the field Up to date with the latest developments and research Editors Dr. Mesfin A. Kebede obtained his PhD in Metallurgical Engineering from Inha University, South Korea. He is now a principal research scientist at Energy Centre of Council for Scientific and Industrial Research (CSIR), South Africa. He was previously an assistant professor in the Department of Applied Physics and Materials Science at Hawassa University, Ethiopia. His extensive research experience covers the use of electrode materials for energy storage and energy conversion. Prof. Fabian I. Ezema is a professor at the University of Nigeria, Nsukka. He obtained his PhD in Physics and Astronomy from University of Nigeria, Nsukka. His research focuses on several areas of materials science with an emphasis on energy applications, specifically electrode materials for energy conversion and storage.

Physics of Energy Conversion

Physics of Energy Conversion
Author: Katharina Krischer
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 239
Release: 2015-05-19
Genre: Science
ISBN: 1501502689

A profound understanding of the physical laws underlying energy converters is a prerequisite for a sustainable use of our energy resources. The aim of this textbook is to provide a unified view on the different energy conversion processes ranging from power plants to solar cells. It offers an interdisciplinary introduction to energy sciences for senior undergraduate and graduate students from natural sciences and engineering. The central theme is the treatment of energy converters as open thermodynamical systems and the performance of efficiency analyses, based on the concept of exergy. Presents the physics behind the most important energy converters in a unified framework. Evaluates the performance of ideal and realistic energy converters in terms of energy and exergy efficiencies Provides basic concepts needed for a discussion of energy converters, such as chemical and applied thermodynamics, electrochemistry and solid state physics. About the Authors Katharina Krischer is a professor of physics at the Technische Universität München, Germany. She has taught lectures on energy sciences for undergraduate and graduate students for more than 10 years. Her research topics include the photo-electrochemical production of solar fuels. Konrad Schönleber is a researcher in the group of Prof. Krischer which he joined after graduating in physics from the Technische Universität München. His research interest focuses on light-driven semiconductor electrochemistry and its application for renewable energies.

Electrochemical Energy Storage

Electrochemical Energy Storage
Author: Jean-Marie Tarascon
Publisher: John Wiley & Sons
Total Pages: 96
Release: 2015-02-23
Genre: Science
ISBN: 1118998146

The electrochemical storage of energy has become essential in assisting the development of electrical transport and use of renewable energies. French researchers have played a key role in this domain but Asia is currently the market leader. Not wanting to see history repeat itself, France created the research network on electrochemical energy storage (RS2E) in 2011. This book discusses the launch of RS2E, its stakeholders, objectives, and integrated structure that assures a continuum between basic research, technological research and industries. Here, the authors will cover the technological advances as well as the challenges that must still be resolved in the field of electrochemical storage, taking into account sustainable development and the limited time available to us.

Functional Materials For Next-generation Rechargeable Batteries

Functional Materials For Next-generation Rechargeable Batteries
Author: Jiangfeng Ni
Publisher: World Scientific
Total Pages: 229
Release: 2021-02-10
Genre: Science
ISBN: 9811230684

Over-consumption of fossil fuels has caused deficiency of limited resources and environmental pollution. Hence, deployment and utilization of renewable energy become an urgent need. The development of next-generation rechargeable batteries that store more energy and last longer has been significantly driven by the utilization of renewable energy.This book starts with principles and fundamentals of lithium rechargeable batteries, followed by their designs and assembly. The book then focuses on the recent progress in the development of advanced functional materials, as both cathode and anode, for next-generation rechargeable batteries such as lithium-sulfur, sodium-ion, and zinc-ion batteries. One of the special features of this book is that both inorganic electrode materials and organic materials are included to meet the requirement of high energy density and high safety of future rechargeable batteries. In addition to traditional non-aqueous rechargeable batteries, detailed information and discussion on aqueous batteries and solid-state batteries are also provided.

Prussian Blue Based Batteries

Prussian Blue Based Batteries
Author: María José Piernas Muñoz
Publisher: Springer
Total Pages: 108
Release: 2018-06-29
Genre: Technology & Engineering
ISBN: 9783319914879

This book reviews the structure and composition of Prussian Blue materials. It presents the state-of-the-art of their application to metal-ion batteries, highlighting the benefits derived from the integration of electrochemical energy storage with clean energies. It concludes with future perspectives including prototyping and large-scale production.