Impact of Deck Cracking on Durability

Impact of Deck Cracking on Durability
Author: Fouad Fanous
Publisher:
Total Pages: 132
Release: 2000
Genre: Bridges
ISBN:

Concrete bridge decks subjected to corrosive environment because of the application of de-icing chemical could deteriorate at a rapid rate. In an effort to minimize corrosion of the reinforcement and the corresponding delaminations and spalls, the Iowa Department of Transportation started using epoxy-coated rebars (ECR) in the top mat of reinforcing around 1976 and in both mats 10 years later. The overall objective of this research was to determine the impact of deck cracking on durability and estimate the remaining functional service life of a bridge deck. This was accomplished by conducting a literature review, visually inspecting several bridge decks, collecting and sampling test cores from cracked and uncracked areas of bridge decks, determining the extent to which epoxy-coated rebars deteriorate at the site of cracks, and evaluating the impact of cracking on service life.

Cracking in Concrete Bridge Decks

Cracking in Concrete Bridge Decks
Author: Tony R. Schmitt
Publisher:
Total Pages: 174
Release: 1995
Genre: Concrete bridges
ISBN:

The causes of cracking in bridge decks are investigated and procedures are recommended to alleviate the problem. Forty continuous steel girder bridges, thirty-seven composite and three noncomposite bridges are evaluated. Field surveys conducted to document cracking patterns and to determine the crack density of each bridge are described. Information collected from construction documents, field books, and weather data logs is presented and compared to the observed levels of cracking to identify correlations between cracking and the variables studied. Thirty-one variables are considered such as material properties, site conditions, construction procedures, design specifications, age of bridge and traffic volume. Based on the research reported herein, cracking in monolithic bridge decks increases with increasing values of concrete slump, percent volume of water and cement, water content, and compressive strength, and decreasing values of air content (especially below 6.0%). Bridge deck overlays placed with zero slump concrete consistently exhibit high levels of cracking. Cracking in overlays also increases as placement lengths increase. High maximum air temperatures and large changes in air temperature on the day of casting aggravate cracking in monolithic bridge decks. High average air temperatures and large changes in air temperature similarly aggravate cracking in bridge deck overlays. Both monolithic and two layer bridges with fixed-ended girders exhibit increased cracking near the abutments compared to those with pin-ended girders.