Inverse Problems, Multi-Scale Analysis, and Effective Medium Theory

Inverse Problems, Multi-Scale Analysis, and Effective Medium Theory
Author: Habib Ammari
Publisher: American Mathematical Soc.
Total Pages: 278
Release: 2006
Genre: Mathematics
ISBN: 0821839683

Recent developments in inverse problems, multi-scale analysis and effective medium theory reveal that these fields share several fundamental concepts. This book is the proceedings of the research conference, ``Workshop in Seoul: Inverse Problems, Multi-Scale Analysis and Homogenization,'' held at Seoul National University, June 22-24, 2005. It highlights the benefits of sharing ideas among these areas, of merging the expertise of scientists working there, and of directing interest towards challenging issues such as imaging nanoscience and biological imaging. Contributions are written by prominent experts and are of interest to researchers and graduate students interested in partial differential equations and applications.

Advances in Logic

Advances in Logic
Author: Su Gao
Publisher: American Mathematical Soc.
Total Pages: 162
Release: 2007
Genre: Mathematics
ISBN: 0821838199

The articles in this book are based on talks given at the North Texas Logic Conference in October of 2004. The main goal of the editors was to collect articles representing diverse fields within logic that would both contain significant new results and be accessible to readers with a general background in logic. Included in the book is a problem list, jointly compiled by the speakers, that reflects some of the most important questions in various areas of logic. This book should be useful to graduate students and researchers alike across the spectrum of mathematical logic.

Banach Spaces of Analytic Functions

Banach Spaces of Analytic Functions
Author: Thomas H. MacGregor
Publisher: American Mathematical Soc.
Total Pages: 162
Release: 2008
Genre: Mathematics
ISBN: 0821842684

This volume is focused on Banach spaces of functions analytic in the open unit disc, such as the classical Hardy and Bergman spaces, and weighted versions of these spaces. Other spaces under consideration here include the Bloch space, the families of Cauchy transforms and fractional Cauchy transforms, BMO, VMO, and the Fock space. Some of the work deals with questions about functions in several complex variables.

Poisson Geometry in Mathematics and Physics

Poisson Geometry in Mathematics and Physics
Author: Giuseppe Dito
Publisher: American Mathematical Soc.
Total Pages: 330
Release: 2008
Genre: Mathematics
ISBN: 0821844237

This volume is a collection of articles by speakers at the Poisson 2006 conference. The program for Poisson 2006 was an overlap of topics that included deformation quantization, generalized complex structures, differentiable stacks, normal forms, and group-valued moment maps and reduction.

Control Methods in PDE-Dynamical Systems

Control Methods in PDE-Dynamical Systems
Author: Fabio Ancona
Publisher: American Mathematical Soc.
Total Pages: 416
Release: 2007
Genre: Mathematics
ISBN: 0821837664

While rooted in controlled PDE systems, this 2005 AMS-IMS-SIAM Summer Research Conference sought to reach out to a rather distinct, yet scientifically related, research community in mathematics interested in PDE-based dynamical systems. Indeed, this community is also involved in the study of dynamical properties and asymptotic long-time behavior (in particular, stability) of PDE-mixed problems. It was the editors' conviction that the time had become ripe and the circumstances propitious for these two mathematical communities--that of PDE control and optimization theorists and that of dynamical specialists--to come together in order to share recent advances and breakthroughs in their respective disciplines. This conviction was further buttressed by recent discoveries that certain energy methods, initially devised for control-theoretic a-priori estimates, once combined with dynamical systems techniques, yield wholly new asymptotic results on well-established, nonlinear PDE systems, particularly hyperb These expectations are now particularly well reflected in the contributions to this volume, which involve nonlinear parabolic, as well as hyperbolic, equations and their attractors; aero-elasticity, elastic systems; Euler-Korteweg models; thin-film equations; Schrodinger equations; beam equations; etc. in addition, the static topics of Helmholtz and Morrey potentials are also prominently featured. A special component of the present volume focuses on hyperbolic conservation laws, to take advantage of recent theoretical advances with significant implications also on applied problems. in all these areas, the reader will find state-of-the-art accounts as stimulating starting points for further research.

Layer Potential Techniques in Spectral Analysis

Layer Potential Techniques in Spectral Analysis
Author: Habib Ammari
Publisher: American Mathematical Soc.
Total Pages: 211
Release: 2009
Genre: Mathematics
ISBN: 0821847848

Since the early part of the twentieth century, the use of integral equations has developed into a range of tools for the study of partial differential equations. This includes the use of single- and double-layer potentials to treat classical boundary value problems. The aim of this book is to give a self-contained presentation of an asymptotic theory for eigenvalue problems using layer potential techniques with applications in the fields of inverse problems, band gap structures, and optimal design, in particular the optimal design of photonic and phononic crystals. Throughout this book, it is shown how powerful the layer potentials techniques are for solving not only boundary value problems but also eigenvalue problems if they are combined with the elegant theory of Gohberg and Sigal on meromorphic operator-valued functions. The general approach in this book is developed in detail for eigenvalue problems for the Laplacian and the Lame system in the following two situations: one under variation of domains or boundary conditions and the other due to the presence of inclusions. The book will be of interest to researchers and graduate students working in the fields of partial differential equations, integral equations, and inverse problems. Researchers in engineering and physics may also find this book helpful.

Multiscale Finite Element Methods

Multiscale Finite Element Methods
Author: Yalchin Efendiev
Publisher: Springer Science & Business Media
Total Pages: 242
Release: 2009-01-10
Genre: Technology & Engineering
ISBN: 0387094962

The aim of this monograph is to describe the main concepts and recent - vances in multiscale ?nite element methods. This monograph is intended for thebroaderaudienceincludingengineers,appliedscientists,andforthosewho are interested in multiscale simulations. The book is intended for graduate students in applied mathematics and those interested in multiscale compu- tions. It combines a practical introduction, numerical results, and analysis of multiscale ?nite element methods. Due to the page limitation, the material has been condensed. Each chapter of the book starts with an introduction and description of the proposed methods and motivating examples. Some new techniques are introduced using formal arguments that are justi?ed later in the last chapter. Numerical examples demonstrating the signi?cance of the proposed methods are presented in each chapter following the description of the methods. In the last chapter, we analyze a few representative cases with the objective of demonstrating the main error sources and the convergence of the proposed methods. A brief outline of the book is as follows. The ?rst chapter gives a general introductiontomultiscalemethodsandanoutlineofeachchapter.Thesecond chapter discusses the main idea of the multiscale ?nite element method and its extensions. This chapter also gives an overview of multiscale ?nite element methods and other related methods. The third chapter discusses the ext- sion of multiscale ?nite element methods to nonlinear problems. The fourth chapter focuses on multiscale methods that use limited global information.

Numerical Analysis of Multiscale Problems

Numerical Analysis of Multiscale Problems
Author: Ivan G. Graham
Publisher: Springer Science & Business Media
Total Pages: 376
Release: 2012-01-05
Genre: Mathematics
ISBN: 3642220614

The 91st London Mathematical Society Durham Symposium took place from July 5th to 15th 2010, with more than 100 international participants attending. The Symposium focused on Numerical Analysis of Multiscale Problems and this book contains 10 invited articles from some of the meeting's key speakers, covering a range of topics of contemporary interest in this area. Articles cover the analysis of forward and inverse PDE problems in heterogeneous media, high-frequency wave propagation, atomistic-continuum modeling and high-dimensional problems arising in modeling uncertainty. Novel upscaling and preconditioning techniques, as well as applications to turbulent multi-phase flow, and to problems of current interest in materials science are all addressed. As such this book presents the current state-of-the-art in the numerical analysis of multiscale problems and will be of interest to both practitioners and mathematicians working in those fields.

Mathematical and Statistical Methods for Imaging

Mathematical and Statistical Methods for Imaging
Author: Habib Ammari
Publisher: American Mathematical Soc.
Total Pages: 178
Release: 2011-07-20
Genre: Mathematics
ISBN: 0821852892

This volume contains the proceedings of the NIMS Thematic Workshop on Mathematical and Statistical Methods for Imaging, which was held from August 10-13, 2010, at Inha University, Incheon, Korea. The goal of this volume is to give the reader a deep and unified understanding of the field of imaging and of the analytical and statistical tools used in imaging. It offers a good overview of the current status of the field and of directions for further research. Challenging problems are addressed from analytical, numerical, and statistical perspectives. The articles are devoted to four main areas: analytical investigation of robustness; hypothesis testing and resolution analysis, particularly for anomaly detection; new efficient imaging techniques; and the effects of anisotropy, dissipation, or attenuation in imaging.

Imaging, Multi-scale and High Contrast Partial Differential Equations

Imaging, Multi-scale and High Contrast Partial Differential Equations
Author: Habib Ammari
Publisher: American Mathematical Soc.
Total Pages: 160
Release: 2016-03-23
Genre: Computers
ISBN: 1470419238

This volume contains the proceedings of the Seoul ICM 2014 Satellite Conference on Imaging, Multi-scale and High-Contrast PDEs, held from August 7-9, 2014, in Daejeon, Korea. The mathematical analysis of partial differential equations modelling materials, or tissues, presenting multiple scales has been a very active area of research. The study of the corresponding imaging or reconstruction problem is a more recent area. If the material parameters of the partial differential equation present high contrast ratio, then the solution to the PDE becomes particularly challenging to analyze and compute. On the other hand, imaging in highly heterogeneous media poses significant challenges to the mathematical community. The focus of this volume is on recent progress towards complete understanding of the direct problem with high contrast or high frequencies, and unified approaches to the inverse and imaging problems for both small and large contrast or frequencies. Of particular importance in imaging are shape representation techniques and regularization approaches. Special attention is devoted to new models and problems coming from physics leading to innovative imaging and signal processing methods.