Inverse Acoustic and Electromagnetic Scattering Theory

Inverse Acoustic and Electromagnetic Scattering Theory
Author: David Colton
Publisher: Springer Science & Business Media
Total Pages: 419
Release: 2012-10-26
Genre: Mathematics
ISBN: 1461449421

The inverse scattering problem is central to many areas of science and technology such as radar and sonar, medical imaging, geophysical exploration and nondestructive testing. This book is devoted to the mathematical and numerical analysis of the inverse scattering problem for acoustic and electromagnetic waves. In this third edition, new sections have been added on the linear sampling and factorization methods for solving the inverse scattering problem as well as expanded treatments of iteration methods and uniqueness theorems for the inverse obstacle problem. These additions have in turn required an expanded presentation of both transmission eigenvalues and boundary integral equations in Sobolev spaces. As in the previous editions, emphasis has been given to simplicity over generality thus providing the reader with an accessible introduction to the field of inverse scattering theory. Review of earlier editions: “Colton and Kress have written a scholarly, state of the art account of their view of direct and inverse scattering. The book is a pleasure to read as a graduate text or to dip into at leisure. It suggests a number of open problems and will be a source of inspiration for many years to come.” SIAM Review, September 1994 “This book should be on the desk of any researcher, any student, any teacher interested in scattering theory.” Mathematical Intelligencer, June 1994

Inverse Acoustic and Electromagnetic Scattering Theory

Inverse Acoustic and Electromagnetic Scattering Theory
Author: David Colton
Publisher: Springer Science & Business Media
Total Pages: 316
Release: 2013-04-17
Genre: Mathematics
ISBN: 3662028352

It has now been almost ten years since our first book on scattering theory ap peared [32]. At that time we claimed that "in recent years the development of integral equation methods for the direct scattering problem seems to be nearing completion, whereas the use of such an approach to study the inverse scattering problem has progressed to an extent that a 'state of the art' survey appears highly desirable". Since we wrote these words, the inverse scattering problem for acoustic and electromagnetic waves has grown from being a few theoreti cal considerations with limited numerical implementations to a weH developed mathematical theory with tested numerical algorithms. This maturing of the field of inverse scattering theory has been based on the realization that such problems are in general not only nonlinear but also improperly posed in the sense that the solution does not depend continuously on the measured data. This was emphasized in [32] and treated with the ideas and tools available at that time. Now, almost ten years later, these initial ideas have developed to the extent that a monograph summarizing the mathematical basis of the field seems appropriate. This book is oUf attempt to write such a monograph. The inverse scattering problem for acoustic and electromagnetic waves can broadly be divided into two classes, the inverse obstacle problem and the inverse medium problem.

Inverse Acoustic and Electromagnetic Scattering Theory

Inverse Acoustic and Electromagnetic Scattering Theory
Author: David Colton
Publisher: Springer Science & Business Media
Total Pages: 419
Release: 2012-10-26
Genre: Mathematics
ISBN: 1461449413

The inverse scattering problem is central to many areas of science and technology such as radar and sonar, medical imaging, geophysical exploration and nondestructive testing. This book is devoted to the mathematical and numerical analysis of the inverse scattering problem for acoustic and electromagnetic waves. In this third edition, new sections have been added on the linear sampling and factorization methods for solving the inverse scattering problem as well as expanded treatments of iteration methods and uniqueness theorems for the inverse obstacle problem. These additions have in turn required an expanded presentation of both transmission eigenvalues and boundary integral equations in Sobolev spaces. As in the previous editions, emphasis has been given to simplicity over generality thus providing the reader with an accessible introduction to the field of inverse scattering theory. Review of earlier editions: “Colton and Kress have written a scholarly, state of the art account of their view of direct and inverse scattering. The book is a pleasure to read as a graduate text or to dip into at leisure. It suggests a number of open problems and will be a source of inspiration for many years to come.” SIAM Review, September 1994 “This book should be on the desk of any researcher, any student, any teacher interested in scattering theory.” Mathematical Intelligencer, June 1994

Integral Equation Methods in Scattering Theory

Integral Equation Methods in Scattering Theory
Author: David Colton
Publisher: SIAM
Total Pages: 286
Release: 2013-11-15
Genre: Mathematics
ISBN: 1611973155

This classic book provides a rigorous treatment of the Riesz?Fredholm theory of compact operators in dual systems, followed by a derivation of the jump relations and mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions. These results are then used to study scattering problems for the Helmholtz and Maxwell equations. Readers will benefit from a full discussion of the mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions, an in-depth treatment of the use of boundary integral equations to solve scattering problems for acoustic and electromagnetic waves, and an introduction to inverse scattering theory with an emphasis on the ill-posedness and nonlinearity of the inverse scattering problem.

Point Sources and Multipoles in Inverse Scattering Theory

Point Sources and Multipoles in Inverse Scattering Theory
Author: Roland Potthast
Publisher: CRC Press
Total Pages: 277
Release: 2001-05-30
Genre: Mathematics
ISBN: 1420035487

Over the last twenty years, the growing availability of computing power has had an enormous impact on the classical fields of direct and inverse scattering. The study of inverse scattering, in particular, has developed rapidly with the ability to perform computational simulations of scattering processes and led to remarkable advances in a range of

Qualitative Methods in Inverse Scattering Theory

Qualitative Methods in Inverse Scattering Theory
Author: Fioralba Cakoni
Publisher: Springer Science & Business Media
Total Pages: 232
Release: 2005-12-29
Genre: Mathematics
ISBN: 3540312307

Inverse scattering theory has been a particularly active and successful field in applied mathematics and engineering for the past twenty years. The increasing demands of imaging and target identification require new powerful and flexible techniques besides the existing weak scattering approximation or nonlinear optimization methods. One class of such methods comes under the general description of qualitative methods in inverse scattering theory. This textbook is an easily-accessible "class-tested" introduction to the field. It is accessible also to readers who are not professional mathematicians, thus making these new mathematical ideas in inverse scattering theory available to the wider scientific and engineering community.

Scattering Theory of Waves and Particles

Scattering Theory of Waves and Particles
Author: R.G. Newton
Publisher: Springer Science & Business Media
Total Pages: 758
Release: 2013-11-27
Genre: Science
ISBN: 3642881289

Much progress has been made in scattering theory since the publication of the first edition of this book fifteen years ago, and it is time to update it. Needless to say, it was impossible to incorporate all areas of new develop ment. Since among the newer books on scattering theory there are three excellent volumes that treat the subject from a much more abstract mathe matical point of view (Lax and Phillips on electromagnetic scattering, Amrein, Jauch and Sinha, and Reed and Simon on quantum scattering), I have refrained from adding material concerning the abundant new mathe matical results on time-dependent formulations of scattering theory. The only exception is Dollard's beautiful "scattering into cones" method that connects the physically intuitive and mathematically clean wave-packet description to experimentally accessible scattering rates in a much more satisfactory manner than the older procedure. Areas that have been substantially augmented are the analysis of the three-dimensional Schrodinger equation for non central potentials (in Chapter 10), the general approach to multiparticle reaction theory (in Chapter 16), the specific treatment of three-particle scattering (in Chapter 17), and inverse scattering (in Chapter 20). The additions to Chapter 16 include an introduction to the two-Hilbert space approach, as well as a derivation of general scattering-rate formulas. Chapter 17 now contains a survey of various approaches to the solution of three-particle problems, as well as a discussion of the Efimov effect.

Forward and Inverse Scattering Algorithms Based on Contrast Source Integral Equations

Forward and Inverse Scattering Algorithms Based on Contrast Source Integral Equations
Author: Peter M. van den Berg
Publisher: John Wiley & Sons
Total Pages: 544
Release: 2021-02-15
Genre: Science
ISBN: 1119741564

A guide to wave-field computational methods based on contrast source type of integral equations Forward and Inverse Scattering Algorithms Based on Contrast Source Integral Equations presents a text that examines wave-field computational methods based on contrast source type of integral equations and the computational implementation in wave-field based imaging methods. Written by a noted expert on the topic, the book provides a guide to efficient methods for calculating wave fields in a known inhomogeneous medium. The author provides a link between the fundamental scattering theory and its discrete counterpart and discusses the forward scattering problem based on the contrast-source integral equations. The book fully describes the calculation of wave fields inside and outside a scattering object with general shape and material property and reviews the inverse scattering problem, in which material properties are resolved from wave-field measurements outside the scattering object. The theoretical approach is the inverse of the forward scattering problem that determines how radiation is scattered, based on the scattering object. This important book: Provides a guide to the effects of scalar waves, acoustic waves and electromagnetic waves Describes computer modeling in 1D, 2D and 3D models Includes an online site for computer codes with adjustable configurations Written for students, researchers, and professionals, Forward and Inverse Scattering Algorithms Based on Contrast Source Integral Equations offers a guide to wave-field computational methods based on contrast source type of integral equations and the computational implementation in wave-field based imaging methods.