Introduction To R For Social Scientists
Download Introduction To R For Social Scientists full books in PDF, epub, and Kindle. Read online free Introduction To R For Social Scientists ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Kosuke Imai |
Publisher | : Princeton University Press |
Total Pages | : 464 |
Release | : 2021-03-16 |
Genre | : Political Science |
ISBN | : 0691191093 |
"Princeton University Press published Imai's textbook, Quantitative Social Science: An Introduction, an introduction to quantitative methods and data science for upper level undergrads and graduates in professional programs, in February 2017. What is distinct about the book is how it leads students through a series of applied examples of statistical methods, drawing on real examples from social science research. The original book was prepared with the statistical software R, which is freely available online and has gained in popularity in recent years. But many existing courses in statistics and data sciences, particularly in some subject areas like sociology and law, use STATA, another general purpose package that has been the market leader since the 1980s. We've had several requests for STATA versions of the text as many programs use it by default. This is a "translation" of the original text, keeping all the current pedagogical text but inserting the necessary code and outputs from STATA in their place"--
Author | : Hadley Wickham |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 521 |
Release | : 2016-12-12 |
Genre | : Computers |
ISBN | : 1491910364 |
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Author | : Hrishikesh D. Vinod |
Publisher | : Springer Science & Business Media |
Total Pages | : 219 |
Release | : 2009-12-24 |
Genre | : Business & Economics |
ISBN | : 1441917640 |
Quantitative social science research has been expanding due to the ava- ability of computers and data over the past few decades. Yet the textbooks and supplements for researchers do not adequately highlight the revolution created by the R software [2] and graphics system. R is fast becoming the l- gua franca of quantitative research with some 2000 free specialized packages, where the latest versions can be downloaded in seconds. Many packages such as “car” [1] developed by social scientists are popular among all scientists. An early 2009 article [3] in the New York Times notes that statisticians, engineers and scientists without computer programming skills ?nd R “easy to use.” A common language R can readily promote deeper mutual respect and understanding of unique problems facing quantitative work in various social sciences. Often the solutions developed in one ?eld can be extended and used in many ?elds. This book promotes just such exchange of ideas across many social sciences. Since Springer has played a leadership role in promoting R, we are fortunate to have Springer publish this book. A Conference on Quantitative Social Science Research Using R was held in New York City at the Lincoln Center campus of Fordham University, June 18–19, 2009. This book contains selected papers presented at the conference, representing the “Proceedings” of the conference.
Author | : Jose Manuel Magallanes Reyes |
Publisher | : Cambridge University Press |
Total Pages | : 317 |
Release | : 2017-09-21 |
Genre | : Computers |
ISBN | : 1107117410 |
This comprehensive guide provides a step-by-step approach to data collection, cleaning, formatting, and storage, using Python and R.
Author | : Elena Llaudet |
Publisher | : Princeton University Press |
Total Pages | : 256 |
Release | : 2022-11-29 |
Genre | : Computers |
ISBN | : 0691199434 |
"Data analysis has become a necessary skill across the social sciences, and recent advancements in computing power have made knowledge of programming an essential component. Yet most data science books are intimidating and overwhelming to a non-specialist audience, including most undergraduates. This book will be a shorter, more focused and accessible version of Kosuke Imai's Quantitative Social Science book, which was published by Princeton in 2018 and has been adopted widely in graduate level courses of the same title. This book uses the same innovative approach as Quantitative Social Science , using real data and 'R' to answer a wide range of social science questions. It assumes no prior knowledge of statistics or coding. It starts with straightforward, simple data analysis and culminates with multivariate linear regression models, focusing more on the intuition of how the math works rather than the math itself. The book makes extensive use of data visualizations, diagrams, pictures, cartoons, etc., to help students understand and recall complex concepts, provides an easy to follow, step-by-step template of how to conduct data analysis from beginning to end, and will be accompanied by supplemental materials in the appendix and online for both students and instructors"--
Author | : Brian J. Fogarty |
Publisher | : SAGE |
Total Pages | : 437 |
Release | : 2018-11-24 |
Genre | : Social Science |
ISBN | : 1526459728 |
"One of the few books that provide an accessible introduction to quantitative data analysis with R. A particular strength of the text is the focus on ′real world′ examples which help students to understand why they are learning these methods." - Dr Roxanne Connelly, University of York Relevant, engaging, and packed with student-focused learning features, this book provides the step-by-step introduction to quantitative research and data every student needs. Gradually introducing applied statistics and R, it uses examples from across the social sciences to show you how to apply abstract statistical and methodological principles to your own work. At a student-friendly pace, it enables you to: - Understand and use quantitative data to answer questions - Approach surrounding ethical issues - Collect quantitative data - Manage, write about, and share the data effectively Supported by incredible digital resources with online tutorials, videos, datasets, and multiple choice questions, this book gives you not only the tools you need to understand statistics, quantitative data, and R software, but also the chance to practice and apply what you have learned.
Author | : Phillip D. Brooker |
Publisher | : SAGE |
Total Pages | : 370 |
Release | : 2019-12-09 |
Genre | : Social Science |
ISBN | : 1526486342 |
As data become ′big′, fast and complex, the software and computing tools needed to manage and analyse them are rapidly developing. Social scientists need new tools to meet these challenges, tackle big datasets, while also developing a more nuanced understanding of - and control over - how these computing tools and algorithms are implemented. Programming with Python for Social Scientists offers a vital foundation to one of the most popular programming tools in computer science, specifically for social science researchers, assuming no prior coding knowledge. It guides you through the full research process, from question to publication, including: the fundamentals of why and how to do your own programming in social scientific research, questions of ethics and research design, a clear, easy to follow ′how-to′ guide to using Python, with a wide array of applications such as data visualisation, social media data research, social network analysis, and more. Accompanied by numerous code examples, screenshots, sample data sources, this is the textbook for social scientists looking for a complete introduction to programming with Python and incorporating it into their research design and analysis.
Author | : G. David Garson |
Publisher | : Routledge |
Total Pages | : 704 |
Release | : 2021-11-30 |
Genre | : Psychology |
ISBN | : 1000467082 |
Data Analytics for the Social Sciences is an introductory, graduate-level treatment of data analytics for social science. It features applications in the R language, arguably the fastest growing and leading statistical tool for researchers. The book starts with an ethics chapter on the uses and potential abuses of data analytics. Chapters 2 and 3 show how to implement a broad range of statistical procedures in R. Chapters 4 and 5 deal with regression and classification trees and with random forests. Chapter 6 deals with machine learning models and the "caret" package, which makes available to the researcher hundreds of models. Chapter 7 deals with neural network analysis, and Chapter 8 deals with network analysis and visualization of network data. A final chapter treats text analysis, including web scraping, comparative word frequency tables, word clouds, word maps, sentiment analysis, topic analysis, and more. All empirical chapters have two "Quick Start" exercises designed to allow quick immersion in chapter topics, followed by "In Depth" coverage. Data are available for all examples and runnable R code is provided in a "Command Summary". An appendix provides an extended tutorial on R and RStudio. Almost 30 online supplements provide information for the complete book, "books within the book" on a variety of topics, such as agent-based modeling. Rather than focusing on equations, derivations, and proofs, this book emphasizes hands-on obtaining of output for various social science models and how to interpret the output. It is suitable for all advanced level undergraduate and graduate students learning statistical data analysis.
Author | : Ian Diamond |
Publisher | : SAGE |
Total Pages | : 316 |
Release | : 2013-02-26 |
Genre | : Social Science |
ISBN | : 1446223485 |
`The clarity, simplicity and use of many practical examples makes this book very useful, primarily for under- and postgraduate students′ - Journal of Biosocial Science With an emphasis on description, examples, graphs and displays rather than statistical formulae, this book is the ideal introductory guide for students across the social sciences. It shows how all students can understand the basic ideas of statistics at a level appropriate with being a good social scientist. The authors explain the right ways to present data, how to describe a set of data using summary statistics and how to infer what is going on in a population when all you have to go on is the sample. The book uses small data sets to help students understand the basic principles, and no mathematics or statistical background is assumed.
Author | : Anol Bhattacherjee |
Publisher | : CreateSpace |
Total Pages | : 156 |
Release | : 2012-04-01 |
Genre | : Science |
ISBN | : 9781475146127 |
This book is designed to introduce doctoral and graduate students to the process of conducting scientific research in the social sciences, business, education, public health, and related disciplines. It is a one-stop, comprehensive, and compact source for foundational concepts in behavioral research, and can serve as a stand-alone text or as a supplement to research readings in any doctoral seminar or research methods class. This book is currently used as a research text at universities on six continents and will shortly be available in nine different languages.