Introduction to Quantum Field Theory with Applications to Quantum Gravity

Introduction to Quantum Field Theory with Applications to Quantum Gravity
Author: Iosif L. Buchbinder
Publisher: Oxford University Press
Total Pages: 464
Release: 2021-03-01
Genre: Science
ISBN: 0192575317

Applications of quantum field theoretical methods to gravitational physics, both in the semiclassical and the full quantum frameworks, require a careful formulation of the fundamental basis of quantum theory, with special attention to such important issues as renormalization, quantum theory of gauge theories, and especially effective action formalism. The first part of this graduate textbook provides both a conceptual and technical introduction to the theory of quantum fields. The presentation is consistent, starting from elements of group theory, classical fields, and moving on to the effective action formalism in general gauge theories. Compared to other existing books, the general formalism of renormalization in described in more detail, and special attention paid to gauge theories. This part can serve as a textbook for a one-semester introductory course in quantum field theory. In the second part, we discuss basic aspects of quantum field theory in curved space, and perturbative quantum gravity. More than half of Part II is written with a full exposition of details, and includes elaborated examples of simplest calculations. All chapters include exercises ranging from very simple ones to those requiring small original investigations. The selection of material of the second part is done using the “must-know” principle. This means we included detailed expositions of relatively simple techniques and calculations, expecting that the interested reader will be able to learn more advanced issues independently after working through the basic material, and completing the exercises.

Quantum Field Theory II

Quantum Field Theory II
Author: Edouard B. Manoukian
Publisher: Springer
Total Pages: 374
Release: 2016-09-26
Genre: Science
ISBN: 3319338528

This book takes a pedagogical approach to explaining quantum gravity, supersymmetry and string theory in a coherent way. It is aimed at graduate students and researchers in quantum field theory and high-energy physics. The first part of the book introduces quantum gravity, without requiring previous knowledge of general relativity (GR). The necessary geometrical aspects are derived afresh leading to explicit general Lagrangians for gravity, including that of general relativity. The quantum aspect of gravitation, as described by the graviton, is introduced and perturbative quantum GR is discussed. The Schwinger-DeWitt formalism is developed to compute the one-loop contribution to the theory and renormalizability aspects of the perturbative theory are also discussed. This follows by introducing only the very basics of a non-perturbative, background-independent, formulation of quantum gravity, referred to as “loop quantum gravity”, which gives rise to a quantization of space. In the second part the author introduces supersymmetry and its consequences. The generation of superfields is represented in detail. Supersymmetric generalizations of Maxwell’s Theory as well as of Yang-Mills field theory, and of the standard model are worked out. Spontaneous symmetry breaking, improvement of the divergence problem in supersymmetric field theory, and its role in the hierarchy problem are covered. The unification of the fundamental constants in a supersymmetric version of the standard model are then studied. Geometrical aspects necessary to study supergravity are developed culminating in the derivation of its full action. The third part introduces string theory and the analysis of the spectra of the mass (squared) operator associated with the oscillating strings. The properties of the underlying fields, associated with massless particles, encountered in string theory are studied in some detail. Elements of compactification, duality and D-branes are given, as well of the generation of vertices and interactions of strings. In the final sections, the author shows how to recover GR and the Yang-Mills field Theory from string theory.

Quantum Field Theory and Gravity

Quantum Field Theory and Gravity
Author: Felix Finster
Publisher: Springer Science & Business Media
Total Pages: 389
Release: 2012-02-08
Genre: Mathematics
ISBN: 3034800436

One of the most challenging problems of contemporary theoretical physics is the mathematically rigorous construction of a theory which describes gravitation and the other fundamental physical interactions within a common framework. The physical ideas which grew from attempts to develop such a theory require highly advanced mathematical methods and radically new physical concepts. This book presents different approaches to a rigorous unified description of quantum fields and gravity. It contains a carefully selected cross-section of lively discussions which took place in autumn 2010 at the fifth conference "Quantum field theory and gravity - Conceptual and mathematical advances in the search for a unified framework" in Regensburg, Germany. In the tradition of the other proceedings covering this series of conferences, a special feature of this book is the exposition of a wide variety of approaches, with the intention to facilitate a comparison. The book is mainly addressed to mathematicians and physicists who are interested in fundamental questions of mathematical physics. It allows the reader to obtain a broad and up-to-date overview of a fascinating active research area.

Combinatorial Physics

Combinatorial Physics
Author: Adrian Tanasa
Publisher: Oxford University Press
Total Pages: 409
Release: 2021
Genre: Computers
ISBN: 0192895494

The goal of the book is to use combinatorial techniques to solve fundamental physics problems, and vice-versa, to use theoretical physics techniques to solve combinatorial problems.

A Prelude to Quantum Field Theory

A Prelude to Quantum Field Theory
Author: John Donoghue
Publisher: Princeton University Press
Total Pages: 160
Release: 2022-02-22
Genre: Science
ISBN: 0691223505

A concise, beginner-friendly introduction to quantum field theory Quantum field theory is a powerful framework that extends quantum mechanics in ways that are essential in many modern applications. While it is the fundamental formalism for the study of many areas of physics, quantum field theory requires a different way of thinking, and many newcomers to the subject struggle with the transition from quantum mechanics. A Prelude to Quantum Field Theory introduces the key concepts of quantum field theory in a brief and accessible manner while never sacrificing mathematical rigor. The result is an easy-to-use textbook that distills the most general properties of the theory without overwhelming beginning students with more advanced applications. Bridges quantum mechanics and quantum field theory, emphasizing analogies and differences Emphasizes a “quantum field theoretical mindset” while maintaining mathematical rigor Obtains quantum fields as the continuum limit of a quantized system of many particles Highlights the correspondence between wave function—fundamental in quantum mechanics—and the formalism of second quantization used in quantum field theory Provides a step-by-step derivation of Feynman rules for the perturbative study of interacting theories Introduces students to renormalization, path integrals techniques, and more Discusses more modern topics like effective field theories Ideal for both undergraduate and graduate students Proven in the classroom

Quantum Field Theory I

Quantum Field Theory I
Author: Edouard B. Manoukian
Publisher: Springer
Total Pages: 599
Release: 2016-12-01
Genre: Science
ISBN: 3319309390

This textbook covers a broad spectrum of developments in QFT, emphasizing those aspects that are now well consolidated and for which satisfactory theoretical descriptions have been provided. The book is unique in that it offers a new approach to the subject and explores many topics merely touched upon, if covered at all, in standard reference works. A detailed and largely non-technical introductory chapter traces the development of QFT from its inception in 1926. The elegant functional differential approach put forward by Schwinger, referred to as the quantum dynamical (action) principle, and its underlying theory are used systematically in order to generate the so-called vacuum-to-vacuum transition amplitude of both abelian and non-abelian gauge theories, in addition to Feynman’s well-known functional integral approach, referred to as the path-integral approach. Given the wealth of information also to be found in the abelian case, equal importance is put on both abelian and non-abelian gauge theories. Particular emphasis is placed on the concept of a quantum field and its particle content to provide an appropriate description of physical processes at high energies, where relativity becomes indispensable. Moreover, quantum mechanics implies that a wave function renormalization arises in the QFT field independent of any perturbation theory - a point not sufficiently emphasized in the literature. The book provides an overview of all the fields encountered in present high-energy physics, together with the details of the underlying derivations. Further, it presents “deep inelastic” experiments as a fundamental application of quantum chromodynamics. Though the author makes a point of deriving points in detail, the book still requires good background knowledge of quantum mechanics, including the Dirac Theory, as well as elements of the Klein-Gordon equation. The present volume sets the language, the notation and provides additional background for reading Quantum Field Theory II - Introduction to Quantum Gravity, Supersymmetry and String Theory, by the same author. Students in this field might benefit from first reading the book Quantum Theory: A Wide Spectrum (Springer, 2006), by the same author.

Quantum Gravity

Quantum Gravity
Author: Domenico J. W. Giulini
Publisher: Springer Science & Business Media
Total Pages: 426
Release: 2003-09-16
Genre: Science
ISBN: 9783540408109

The relation between quantum theory and the theory of gravitation remains one of the most outstanding unresolved issues of modern physics. According to general expectation, general relativity as well as quantum (field) theory in a fixed background spacetime cannot be fundamentally correct. Hence there should exist a broader theory comprising both in appropriate limits, i.e., quantum gravity. This book gives readers a comprehensive introduction accessible to interested non-experts to the main issues surrounding the search for quantum gravity. These issues relate to fundamental questions concerning the various formalisms of quantization; specific questions concerning concrete processes, like gravitational collapse or black-hole evaporation; and the all important question concerning the possibility of experimental tests of quantum-gravity effects.

Quantum Field Theory, as Simply as Possible

Quantum Field Theory, as Simply as Possible
Author: Anthony Zee
Publisher: Princeton University Press
Total Pages: 393
Release: 2023-01-17
Genre: Science
ISBN: 0691239274

An exceptionally accessible introduction to quantum field theory Quantum field theory is by far the most spectacularly successful theory in physics, but also one of the most mystifying. Quantum Field Theory, as Simply as Possible provides an essential primer on the subject, giving readers the conceptual foundations they need to wrap their heads around one of the most important yet baffling subjects in physics. Quantum field theory grew out of quantum mechanics in the late 1930s and was developed by a generation of brilliant young theorists, including Julian Schwinger and Richard Feynman. Their predictions were experimentally verified to an astounding accuracy unmatched by the rest of physics. Quantum field theory unifies quantum mechanics and special relativity, thus providing the framework for understanding the quantum mysteries of the subatomic world. With his trademark blend of wit and physical insight, A. Zee guides readers from the classical notion of the field to the modern frontiers of quantum field theory, covering a host of topics along the way, including antimatter, Feynman diagrams, virtual particles, the path integral, quantum chromodynamics, electroweak unification, grand unification, and quantum gravity. A unique and valuable introduction for students and general readers alike, Quantum Field Theory, as Simply as Possible explains how quantum field theory informs our understanding of the universe, and how it can shed light on some of the deepest mysteries of physics.

Introduction to Quantum Field Theory

Introduction to Quantum Field Theory
Author: Horatiu Nastase
Publisher: Cambridge University Press
Total Pages: 735
Release: 2019-10-17
Genre: Science
ISBN: 1108493998

A comprehensive, graduate-level textbook introducing quantum field theory, giving equal emphasis to operator and path integral formalisms.

Relativistic Quantum Physics

Relativistic Quantum Physics
Author: Tommy Ohlsson
Publisher: Cambridge University Press
Total Pages: 311
Release: 2011-09-22
Genre: Science
ISBN: 1139504320

Quantum physics and special relativity theory were two of the greatest breakthroughs in physics during the twentieth century and contributed to paradigm shifts in physics. This book combines these two discoveries to provide a complete description of the fundamentals of relativistic quantum physics, guiding the reader effortlessly from relativistic quantum mechanics to basic quantum field theory. The book gives a thorough and detailed treatment of the subject, beginning with the classification of particles, the Klein–Gordon equation and the Dirac equation. It then moves on to the canonical quantization procedure of the Klein–Gordon, Dirac and electromagnetic fields. Classical Yang–Mills theory, the LSZ formalism, perturbation theory, elementary processes in QED are introduced, and regularization, renormalization and radiative corrections are explored. With exercises scattered through the text and problems at the end of most chapters, the book is ideal for advanced undergraduate and graduate students in theoretical physics.