Introduction to Linear Algebra in Geology

Introduction to Linear Algebra in Geology
Author: J. Ferguson
Publisher: Springer Science & Business Media
Total Pages: 224
Release: 1994-05-31
Genre: Mathematics
ISBN: 0412493500

Introduction to Linear Algebra in Geology introduces linear algebra to students of geology and explores the possibilities of using the techniques as an aid to solving geological problems which can be solved numerically. A basic knowledge of geology is assumed.

Introduction to Applied Linear Algebra

Introduction to Applied Linear Algebra
Author: Stephen Boyd
Publisher: Cambridge University Press
Total Pages: 477
Release: 2018-06-07
Genre: Business & Economics
ISBN: 1316518965

A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.

Structural Geology Algorithms

Structural Geology Algorithms
Author: Richard Waldron Allmendinger
Publisher:
Total Pages: 302
Release: 2014-05-14
Genre: SCIENCE
ISBN: 9781139207416

"Structural Geology has been taught, largely unchanged, for the last 50 years or more. The lecture part of most courses introduces students to concepts such as stress and strain, as well as more descriptive material like fault and fold terminology. The lab part of the course usually focuses on practical problem solving, mostly traditional me-thods for describing quantitatively the geometry of structures. While the lecture may introduce advanced concepts such as tensors, the lab commonly trains the student to use a combination of graphical methods like orthographic or spherical projection, as well as a variety of plane trigonometry solutions to various problems. This leads to a disconnect between lecture concepts that require a very precise understanding of coor-dinate systems (e.g., tensors) and lab methods that appear to have no common spatial or mathematical foundation. Students have no chance to understand that, for example, seemingly unconnected constructions like down-plunge projections and Mohr circles share a common mathematical heritage: they are both graphical representations of coordinate transformations"--Provided by publisher.

Introduction to Numerical Linear Algebra and Optimisation

Introduction to Numerical Linear Algebra and Optimisation
Author: Philippe G. Ciarlet
Publisher: Cambridge University Press
Total Pages: 456
Release: 1989-08-25
Genre: Computers
ISBN: 9780521339841

The purpose of this book is to give a thorough introduction to the most commonly used methods of numerical linear algebra and optimisation. The prerequisites are some familiarity with the basic properties of matrices, finite-dimensional vector spaces, advanced calculus, and some elementary notations from functional analysis. The book is in two parts. The first deals with numerical linear algebra (review of matrix theory, direct and iterative methods for solving linear systems, calculation of eigenvalues and eigenvectors) and the second, optimisation (general algorithms, linear and nonlinear programming). The author has based the book on courses taught for advanced undergraduate and beginning graduate students and the result is a well-organised and lucid exposition. Summaries of basic mathematics are provided, proofs of theorems are complete yet kept as simple as possible, and applications from physics and mechanics are discussed. Professor Ciarlet has also helpfully provided over 40 line diagrams, a great many applications, and a useful guide to further reading. This excellent textbook, which is translated and revised from the very successful French edition, will be of great value to students of numerical analysis, applied mathematics and engineering.

Mathematics in Geology

Mathematics in Geology
Author: John Ferguson
Publisher: Springer Science & Business Media
Total Pages: 310
Release: 2013-11-11
Genre: Science
ISBN: 9401540098

1. 1 Solution of geological problems-are mathematical methods necessary? A question which is often asked is whether it is necessary for geologists to know and to use mathematics in the practise of their science. There is no simple answer to this question, and it is true that many geologists have had successful careers without ever needing to get involved in anything other than simple mathematics, and all the indications are that this is likely to continue into the future. However, in many branches of the subject the trend has been towards using a numerical approach for the solution of suitable problems. The extent to which this occurs depends on the nature of the area being studied; thus, in structural geology, which is con cerned in its simplest aspects with the geometrical relationships between various features, there are many problems which are easily solved. More recently the use of analytical methods has allowed the solution of more-difficult problems. In another area, geochemistry, two things have happened. On the theoretical side there has been a greater integration with physical chemistry, which itself is a highly mathematical subject; and on the practical side there is the need to analyse and interpret the vast quantities of data which modem instrumentation produces. Within geology the application of numerical methods has been given various names, so we have numerical geology, geo mathematics, geostatistics and geosimulation.

Elementary Linear Algebra

Elementary Linear Algebra
Author: Stephen Andrilli
Publisher: Academic Press
Total Pages: 773
Release: 2010-02-04
Genre: Mathematics
ISBN: 0080886256

Elementary Linear Algebra develops and explains in careful detail the computational techniques and fundamental theoretical results central to a first course in linear algebra. This highly acclaimed text focuses on developing the abstract thinking essential for further mathematical study The authors give early, intensive attention to the skills necessary to make students comfortable with mathematical proofs. The text builds a gradual and smooth transition from computational results to general theory of abstract vector spaces. It also provides flexbile coverage of practical applications, exploring a comprehensive range of topics. Ancillary list:* Maple Algorithmic testing- Maple TA- www.maplesoft.com - Includes a wide variety of applications, technology tips and exercises, organized in chart format for easy reference - More than 310 numbered examples in the text at least one for each new concept or application - Exercise sets ordered by increasing difficulty, many with multiple parts for a total of more than 2135 questions - Provides an early introduction to eigenvalues/eigenvectors - A Student solutions manual, containing fully worked out solutions and instructors manual available

Algebra: A Very Short Introduction

Algebra: A Very Short Introduction
Author: Peter M. Higgins
Publisher: OUP Oxford
Total Pages: 161
Release: 2015-10-22
Genre: Mathematics
ISBN: 0191047465

Algebra marked the beginning of modern mathematics, moving it beyond arithmetic, which involves calculations featuring given numbers, to problems where some quantities are unknown. Now, it stands as a pillar of mathematics, underpinning the quantitative sciences, both social and physical. This Very Short Introduction explains algebra from scratch. Over the course of ten logical chapters, Higgins offers a step by step approach for readers keen on developing their understanding of algebra. Using theory and example, he renews the reader's aquaintance with school mathematics, before taking them progressively further and deeper into the subject. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.

Introduction to Linear Models and Statistical Inference

Introduction to Linear Models and Statistical Inference
Author: Steven J. Janke
Publisher: John Wiley & Sons
Total Pages: 600
Release: 2005-09-15
Genre: Mathematics
ISBN: 0471740101

A multidisciplinary approach that emphasizes learning by analyzing real-world data sets This book is the result of the authors' hands-on classroom experience and is tailored to reflect how students best learn to analyze linear relationships. The text begins with the introduction of four simple examples of actual data sets. These examples are developed and analyzed throughout the text, and more complicated examples of data sets are introduced along the way. Taking a multidisciplinary approach, the book traces the conclusion of the analyses of data sets taken from geology, biology, economics, psychology, education, sociology, and environmental science. As students learn to analyze the data sets, they master increasingly sophisticated linear modeling techniques, including: * Simple linear models * Multivariate models * Model building * Analysis of variance (ANOVA) * Analysis of covariance (ANCOVA) * Logistic regression * Total least squares The basics of statistical analysis are developed and emphasized, particularly in testing the assumptions and drawing inferences from linear models. Exercises are included at the end of each chapter to test students' skills before moving on to more advanced techniques and models. These exercises are marked to indicate whether calculus, linear algebra, or computer skills are needed. Unlike other texts in the field, the mathematics underlying the models is carefully explained and accessible to students who may not have any background in calculus or linear algebra. Most chapters include an optional final section on linear algebra for students interested in developing a deeper understanding. The many data sets that appear in the text are available on the book's Web site. The MINITAB(r) software program is used to illustrate many of the examples. For students unfamiliar with MINITAB(r), an appendix introduces the key features needed to study linear models. With its multidisciplinary approach and use of real-world data sets that bring the subject alive, this is an excellent introduction to linear models for students in any of the natural or social sciences.

Handbook of Mathematical Geosciences

Handbook of Mathematical Geosciences
Author: B.S. Daya Sagar
Publisher: Springer
Total Pages: 911
Release: 2018-06-25
Genre: Science
ISBN: 3319789996

This Open Access handbook published at the IAMG's 50th anniversary, presents a compilation of invited path-breaking research contributions by award-winning geoscientists who have been instrumental in shaping the IAMG. It contains 45 chapters that are categorized broadly into five parts (i) theory, (ii) general applications, (iii) exploration and resource estimation, (iv) reviews, and (v) reminiscences covering related topics like mathematical geosciences, mathematical morphology, geostatistics, fractals and multifractals, spatial statistics, multipoint geostatistics, compositional data analysis, informatics, geocomputation, numerical methods, and chaos theory in the geosciences.

Essential Maths for Geoscientists

Essential Maths for Geoscientists
Author: Paul I. Palmer
Publisher: John Wiley & Sons
Total Pages: 216
Release: 2014-06-16
Genre: Science
ISBN: 0470971932

Essential Maths for Geoscientists: An Introduction is an accessible, student-friendly introduction to the mathematics required by those students taking degree courses within the geosciences. Clearly structured throughout, this book carefully guides students step by step through the first mathematics they will encounter and provides numerous applied examples throughout to enhance students’ understanding and to place each technique in context. Opening with a chapter explaining the need for studying mathematics within geosciences, this book then moves on to cover algebra, solving equations, logarithms and exponentials, uncertainties, errors and statistics, trigonometry, vectors and basic calculus. The final chapter helps to bring the subject all together and provides detailed applied questions to test students’ knowledge. Worked applied examples are included in each chapter along with applied problem questions which are a mix of straightforward maths questions, word questions and more involved questions that involve the manipulation and interpretation of real and synthetic data. The emphasis in the book is on the application of relatively rudimentary mathematics to real-life scientific problems within the geosciences, enabling students to make use of current-day research problems and real datasets.