A Primer of Infinitesimal Analysis

A Primer of Infinitesimal Analysis
Author: John L. Bell
Publisher: Cambridge University Press
Total Pages: 7
Release: 2008-04-07
Genre: Mathematics
ISBN: 0521887186

A rigorous, axiomatically formulated presentation of the 'zero-square', or 'nilpotent' infinitesimal.

Models for Smooth Infinitesimal Analysis

Models for Smooth Infinitesimal Analysis
Author: Ieke Moerdijk
Publisher: Springer Science & Business Media
Total Pages: 401
Release: 2013-03-14
Genre: Mathematics
ISBN: 147574143X

The aim of this book is to construct categories of spaces which contain all the C?-manifolds, but in addition infinitesimal spaces and arbitrary function spaces. To this end, the techniques of Grothendieck toposes (and the logic inherent to them) are explained at a leisurely pace and applied. By discussing topics such as integration, cohomology and vector bundles in the new context, the adequacy of these new spaces for analysis and geometry will be illustrated and the connection to the classical approach to C?-manifolds will be explained.

Introduction to Analysis of the Infinite

Introduction to Analysis of the Infinite
Author: Leonhard Euler
Publisher: Springer Science & Business Media
Total Pages: 341
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461210216

From the preface of the author: "...I have divided this work into two books; in the first of these I have confined myself to those matters concerning pure analysis. In the second book I have explained those thing which must be known from geometry, since analysis is ordinarily developed in such a way that its application to geometry is shown. In the first book, since all of analysis is concerned with variable quantities and functions of such variables, I have given full treatment to functions. I have also treated the transformation of functions and functions as the sum of infinite series. In addition I have developed functions in infinite series..."

Infinitesimal Analysis

Infinitesimal Analysis
Author: E.I. Gordon
Publisher: Springer Science & Business Media
Total Pages: 435
Release: 2013-03-14
Genre: Mathematics
ISBN: 940170063X

Infinitesimal analysis, once a synonym for calculus, is now viewed as a technique for studying the properties of an arbitrary mathematical object by discriminating between its standard and nonstandard constituents. Resurrected by A. Robinson in the early 1960's with the epithet 'nonstandard', infinitesimal analysis not only has revived the methods of infinitely small and infinitely large quantities, which go back to the very beginning of calculus, but also has suggested many powerful tools for research in every branch of modern mathematics. The book sets forth the basics of the theory, as well as the most recent applications in, for example, functional analysis, optimization, and harmonic analysis. The concentric style of exposition enables this work to serve as an elementary introduction to one of the most promising mathematical technologies, while revealing up-to-date methods of monadology and hyperapproximation. This is a companion volume to the earlier works on nonstandard methods of analysis by A.G. Kusraev and S.S. Kutateladze (1999), ISBN 0-7923-5921-6 and Nonstandard Analysis and Vector Lattices edited by S.S. Kutateladze (2000), ISBN 0-7923-6619-0

Infinitesimal Calculus

Infinitesimal Calculus
Author: James M. Henle
Publisher: Courier Corporation
Total Pages: 146
Release: 2014-01-15
Genre: Mathematics
ISBN: 0486151018

Introducing calculus at the basic level, this text covers hyperreal numbers and hyperreal line, continuous functions, integral and differential calculus, fundamental theorem, infinite sequences and series, infinite polynomials, more. 1979 edition.

Non-standard Analysis

Non-standard Analysis
Author: Abraham Robinson
Publisher: Princeton University Press
Total Pages: 315
Release: 2016-08-11
Genre: Mathematics
ISBN: 1400884225

Considered by many to be Abraham Robinson's magnum opus, this book offers an explanation of the development and applications of non-standard analysis by the mathematician who founded the subject. Non-standard analysis grew out of Robinson's attempt to resolve the contradictions posed by infinitesimals within calculus. He introduced this new subject in a seminar at Princeton in 1960, and it remains as controversial today as it was then. This paperback reprint of the 1974 revised edition is indispensable reading for anyone interested in non-standard analysis. It treats in rich detail many areas of application, including topology, functions of a real variable, functions of a complex variable, and normed linear spaces, together with problems of boundary layer flow of viscous fluids and rederivations of Saint-Venant's hypothesis concerning the distribution of stresses in an elastic body.

Introduction to Infinite Dimensional Stochastic Analysis

Introduction to Infinite Dimensional Stochastic Analysis
Author: Zhi-yuan Huang
Publisher: Springer Science & Business Media
Total Pages: 308
Release: 2012-12-06
Genre: Mathematics
ISBN: 9401141088

The infinite dimensional analysis as a branch of mathematical sciences was formed in the late 19th and early 20th centuries. Motivated by problems in mathematical physics, the first steps in this field were taken by V. Volterra, R. GateallX, P. Levy and M. Frechet, among others (see the preface to Levy[2]). Nevertheless, the most fruitful direction in this field is the infinite dimensional integration theory initiated by N. Wiener and A. N. Kolmogorov which is closely related to the developments of the theory of stochastic processes. It was Wiener who constructed for the first time in 1923 a probability measure on the space of all continuous functions (i. e. the Wiener measure) which provided an ideal math ematical model for Brownian motion. Then some important properties of Wiener integrals, especially the quasi-invariance of Gaussian measures, were discovered by R. Cameron and W. Martin[l, 2, 3]. In 1931, Kolmogorov[l] deduced a second partial differential equation for transition probabilities of Markov processes order with continuous trajectories (i. e. diffusion processes) and thus revealed the deep connection between theories of differential equations and stochastic processes. The stochastic analysis created by K. Ito (also independently by Gihman [1]) in the forties is essentially an infinitesimal analysis for trajectories of stochastic processes. By virtue of Ito's stochastic differential equations one can construct diffusion processes via direct probabilistic methods and treat them as function als of Brownian paths (i. e. the Wiener functionals).

Nonstandard Analysis

Nonstandard Analysis
Author: Alain Robert
Publisher: Courier Corporation
Total Pages: 184
Release: 2003-01-01
Genre: Mathematics
ISBN: 9780486432793

This concise text is based on the axiomatic internal set theory approach. Theoretical topics include idealization, standardization, and transfer, real numbers and numerical functions, continuity, differentiability, and integration. Applications cover invariant means, approximation of functions, differential equations, more. Exercises, hints, and solutions. "Mathematics teaching at its best." — European Journal of Physics. 1988 edition.

Nonstandard Analysis for the Working Mathematician

Nonstandard Analysis for the Working Mathematician
Author: Peter A. Loeb
Publisher: Springer
Total Pages: 485
Release: 2015-08-26
Genre: Mathematics
ISBN: 9401773270

Starting with a simple formulation accessible to all mathematicians, this second edition is designed to provide a thorough introduction to nonstandard analysis. Nonstandard analysis is now a well-developed, powerful instrument for solving open problems in almost all disciplines of mathematics; it is often used as a ‘secret weapon’ by those who know the technique. This book illuminates the subject with some of the most striking applications in analysis, topology, functional analysis, probability and stochastic analysis, as well as applications in economics and combinatorial number theory. The first chapter is designed to facilitate the beginner in learning this technique by starting with calculus and basic real analysis. The second chapter provides the reader with the most important tools of nonstandard analysis: the transfer principle, Keisler’s internal definition principle, the spill-over principle, and saturation. The remaining chapters of the book study different fields for applications; each begins with a gentle introduction before then exploring solutions to open problems. All chapters within this second edition have been reworked and updated, with several completely new chapters on compactifications and number theory. Nonstandard Analysis for the Working Mathematician will be accessible to both experts and non-experts, and will ultimately provide many new and helpful insights into the enterprise of mathematics.