Introduction to Harmonic Analysis on Reductive P-adic Groups. (MN-23)

Introduction to Harmonic Analysis on Reductive P-adic Groups. (MN-23)
Author: Allan G. Silberger
Publisher: Princeton University Press
Total Pages: 379
Release: 2015-03-08
Genre: Mathematics
ISBN: 1400871131

Based on a series of lectures given by Harish-Chandra at the Institute for Advanced Study in 1971-1973, this book provides an introduction to the theory of harmonic analysis on reductive p-adic groups. Originally published in 1979. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Harmonic Analysis, the Trace Formula, and Shimura Varieties

Harmonic Analysis, the Trace Formula, and Shimura Varieties
Author: Clay Mathematics Institute. Summer School
Publisher: American Mathematical Soc.
Total Pages: 708
Release: 2005
Genre: Mathematics
ISBN: 9780821838440

Langlands program proposes fundamental relations that tie arithmetic information from number theory and algebraic geometry with analytic information from harmonic analysis and group representations. This title intends to provide an entry point into this exciting and challenging field.

Random Walks on Reductive Groups

Random Walks on Reductive Groups
Author: Yves Benoist
Publisher: Springer
Total Pages: 319
Release: 2016-10-20
Genre: Mathematics
ISBN: 3319477218

The classical theory of random walks describes the asymptotic behavior of sums of independent identically distributed random real variables. This book explains the generalization of this theory to products of independent identically distributed random matrices with real coefficients. Under the assumption that the action of the matrices is semisimple – or, equivalently, that the Zariski closure of the group generated by these matrices is reductive - and under suitable moment assumptions, it is shown that the norm of the products of such random matrices satisfies a number of classical probabilistic laws. This book includes necessary background on the theory of reductive algebraic groups, probability theory and operator theory, thereby providing a modern introduction to the topic.

Books in Series

Books in Series
Author:
Publisher:
Total Pages: 1858
Release: 1985
Genre: Monographic series
ISBN:

Vols. for 1980- issued in three parts: Series, Authors, and Titles.