Introduction to Global Variational Geometry

Introduction to Global Variational Geometry
Author: Demeter Krupka
Publisher: Elsevier
Total Pages: 207
Release: 2000-04-01
Genre: Mathematics
ISBN: 0080954294

This book provides a comprehensive introduction to modern global variational theory on fibred spaces. It is based on differentiation and integration theory of differential forms on smooth manifolds, and on the concepts of global analysis and geometry such as jet prolongations of manifolds, mappings, and Lie groups. The book will be invaluable for researchers and PhD students in differential geometry, global analysis, differential equations on manifolds, and mathematical physics, and for the readers who wish to undertake further rigorous study in this broad interdisciplinary field. Featured topics- Analysis on manifolds- Differential forms on jet spaces - Global variational functionals- Euler-Lagrange mapping - Helmholtz form and the inverse problem- Symmetries and the Noether's theory of conservation laws- Regularity and the Hamilton theory- Variational sequences - Differential invariants and natural variational principles- First book on the geometric foundations of Lagrange structures- New ideas on global variational functionals - Complete proofs of all theorems - Exact treatment of variational principles in field theory, inc. general relativity- Basic structures and tools: global analysis, smooth manifolds, fibred spaces

Introduction to Global Variational Geometry

Introduction to Global Variational Geometry
Author: Demeter Krupka
Publisher: Springer
Total Pages: 366
Release: 2015-01-13
Genre: Mathematics
ISBN: 9462390738

The book is devoted to recent research in the global variational theory on smooth manifolds. Its main objective is an extension of the classical variational calculus on Euclidean spaces to (topologically nontrivial) finite-dimensional smooth manifolds; to this purpose the methods of global analysis of differential forms are used. Emphasis is placed on the foundations of the theory of variational functionals on fibered manifolds - relevant geometric structures for variational principles in geometry, physical field theory and higher-order fibered mechanics. The book chapters include: - foundations of jet bundles and analysis of differential forms and vector fields on jet bundles, - the theory of higher-order integral variational functionals for sections of a fibred space, the (global) first variational formula in infinitesimal and integral forms- extremal conditions and the discussion of Noether symmetries and generalizations,- the inverse problems of the calculus of variations of Helmholtz type- variational sequence theory and its consequences for the global inverse problem (cohomology conditions)- examples of variational functionals of mathematical physics. Complete formulations and proofs of all basic assertions are given, based on theorems of global analysis explained in the Appendix.

Interpolation Theory - Function Spaces - Differential Operators

Interpolation Theory - Function Spaces - Differential Operators
Author: Hans Triebel
Publisher: Wiley-VCH
Total Pages: 0
Release: 1999-01-06
Genre: Science
ISBN: 9783527402687

Interpolation Theory • Function Spaces • Differential Operators contains a systematic treatment in the following topics: Interpolation theory in Banach spaces Theory of the Besov and (fractional) Sobolev spaces without and with weights in Rn, R+n, and in domains Theory of regular and degenerate elliptic differential operators Structure theory of special nuclear function spaces. It is the aim of the present book to treat these topics from the common point of view of interpolation theory. The second edition now presented contains major changes of formulations and proofs and, finally, an appendix, dealing with recent developments and related references. The book is written for graduate students and research mathematicians, interested in abstract functional analysis and its applications to function spaces and differential operators.

Variational Analysis

Variational Analysis
Author: R. Tyrrell Rockafellar
Publisher: Springer Science & Business Media
Total Pages: 747
Release: 2009-06-26
Genre: Mathematics
ISBN: 3642024319

From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.

Sets of Finite Perimeter and Geometric Variational Problems

Sets of Finite Perimeter and Geometric Variational Problems
Author: Francesco Maggi
Publisher: Cambridge University Press
Total Pages: 475
Release: 2012-08-09
Genre: Mathematics
ISBN: 1139560891

The marriage of analytic power to geometric intuition drives many of today's mathematical advances, yet books that build the connection from an elementary level remain scarce. This engaging introduction to geometric measure theory bridges analysis and geometry, taking readers from basic theory to some of the most celebrated results in modern analysis. The theory of sets of finite perimeter provides a simple and effective framework. Topics covered include existence, regularity, analysis of singularities, characterization and symmetry results for minimizers in geometric variational problems, starting from the basics about Hausdorff measures in Euclidean spaces and ending with complete proofs of the regularity of area-minimizing hypersurfaces up to singular sets of codimension 8. Explanatory pictures, detailed proofs, exercises and remarks providing heuristic motivation and summarizing difficult arguments make this graduate-level textbook suitable for self-study and also a useful reference for researchers. Readers require only undergraduate analysis and basic measure theory.

Introduction to Differential Geometry

Introduction to Differential Geometry
Author: Joel W. Robbin
Publisher: Springer Nature
Total Pages: 426
Release: 2022-01-12
Genre: Mathematics
ISBN: 3662643405

This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.

Cartan Geometries and their Symmetries

Cartan Geometries and their Symmetries
Author: Mike Crampin
Publisher: Springer
Total Pages: 298
Release: 2016-05-20
Genre: Mathematics
ISBN: 9462391920

In this book we first review the ideas of Lie groupoid and Lie algebroid, and the associated concepts of connection. We next consider Lie groupoids of fibre morphisms of a fibre bundle, and the connections on such groupoids together with their symmetries. We also see how the infinitesimal approach, using Lie algebroids rather than Lie groupoids, and in particular using Lie algebroids of vector fields along the projection of the fibre bundle, may be of benefit. We then introduce Cartan geometries, together with a number of tools we shall use to study them. We take, as particular examples, the four classical types of geometry: affine, projective, Riemannian and conformal geometry. We also see how our approach can start to fit into a more general theory. Finally, we specialize to the geometries (affine and projective) associated with path spaces and geodesics, and consider their symmetries and other properties.

Calculus of Variations and Optimal Control Theory

Calculus of Variations and Optimal Control Theory
Author: Daniel Liberzon
Publisher: Princeton University Press
Total Pages: 255
Release: 2012
Genre: Mathematics
ISBN: 0691151873

This textbook offers a concise yet rigorous introduction to calculus of variations and optimal control theory, and is a self-contained resource for graduate students in engineering, applied mathematics, and related subjects. Designed specifically for a one-semester course, the book begins with calculus of variations, preparing the ground for optimal control. It then gives a complete proof of the maximum principle and covers key topics such as the Hamilton-Jacobi-Bellman theory of dynamic programming and linear-quadratic optimal control. Calculus of Variations and Optimal Control Theory also traces the historical development of the subject and features numerous exercises, notes and references at the end of each chapter, and suggestions for further study. Offers a concise yet rigorous introduction Requires limited background in control theory or advanced mathematics Provides a complete proof of the maximum principle Uses consistent notation in the exposition of classical and modern topics Traces the historical development of the subject Solutions manual (available only to teachers) Leading universities that have adopted this book include: University of Illinois at Urbana-Champaign ECE 553: Optimum Control Systems Georgia Institute of Technology ECE 6553: Optimal Control and Optimization University of Pennsylvania ESE 680: Optimal Control Theory University of Notre Dame EE 60565: Optimal Control

Lectures on Symplectic Geometry

Lectures on Symplectic Geometry
Author: Ana Cannas da Silva
Publisher: Springer
Total Pages: 240
Release: 2004-10-27
Genre: Mathematics
ISBN: 354045330X

The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.

Tensors, Differential Forms, and Variational Principles

Tensors, Differential Forms, and Variational Principles
Author: David Lovelock
Publisher: Courier Corporation
Total Pages: 402
Release: 2012-04-20
Genre: Mathematics
ISBN: 048613198X

Incisive, self-contained account of tensor analysis and the calculus of exterior differential forms, interaction between the concept of invariance and the calculus of variations. Emphasis is on analytical techniques. Includes problems.