Introduction To Focused Ion Beams
Download Introduction To Focused Ion Beams full books in PDF, epub, and Kindle. Read online free Introduction To Focused Ion Beams ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Lucille A. Giannuzzi |
Publisher | : Springer Science & Business Media |
Total Pages | : 362 |
Release | : 2006-05-18 |
Genre | : Science |
ISBN | : 038723313X |
Introduction to Focused Ion Beams is geared towards techniques and applications. This is the only text that discusses and presents the theory directly related to applications and the only one that discusses the vast applications and techniques used in FIBs and dual platform instruments.
Author | : Lucille A. Giannuzzi |
Publisher | : Springer Science & Business Media |
Total Pages | : 380 |
Release | : 2004-11-19 |
Genre | : Science |
ISBN | : 9780387231167 |
Introduction to Focused Ion Beams is geared towards techniques and applications. This is the only text that discusses and presents the theory directly related to applications and the only one that discusses the vast applications and techniques used in FIBs and dual platform instruments.
Author | : Jon Orloff |
Publisher | : Springer Science & Business Media |
Total Pages | : 304 |
Release | : 2012-12-06 |
Genre | : Technology & Engineering |
ISBN | : 1461507650 |
In this book, we have attempted to produce a reference on high resolution focused ion beams (FIBs) that will be useful for both the user and the designer of FIB instrumentation. We have included a mix of theory and applications that seemed most useful to us. The field of FIBs has advanced rapidly since the application of the first field emission ion sources in the early 1970s. The development of the liquid metal ion source (LMIS) in the late 1960s and early 1970s and its application for FIBs in the late 1970s have resulted in a powerful tool for research and for industry. There have been hundreds of papers written on many aspects of LMIS and FIBs, and a useful and informative book on these subjects was published in 1991 by Phil Prewett and Grame Mair. Because there have been so many new applications and uses found for FIBs in the last ten years we felt that it was time for another book on the subject.
Author | : P. D. Prewett |
Publisher | : John Wiley & Sons |
Total Pages | : 354 |
Release | : 1991-10-02 |
Genre | : Science |
ISBN | : |
Provides an up-to-date review and analysis of liquid metal ion sources and their applications. The contents range from a discussion of the fundamental physics underlying operation of the liquid metal ion sources, through the technical details of their construction and manufacture to their performance characteristics. Their use in focused ion beam systems is covered in detail, including a discussion of the fundamentals of ion optical focusing column design and the various microengineering applications.
Author | : Ishaq Ahmad |
Publisher | : BoD – Books on Demand |
Total Pages | : 190 |
Release | : 2018-07-18 |
Genre | : Science |
ISBN | : 178923414X |
Ion beam of various energies is a standard research tool in many areas of science, from basic physics to diverse areas in space science and technology, device fabrications, materials science, environment science, and medical sciences. It is an advance and versatile tool to frequently discover applications across a broad range of disciplines and fields. Moreover, scientists are continuously improving the ion beam sources and accelerators to explore ion beam at the forefront of scientific endeavours. This book provides a glance view on MeV ion beam applications, focused ion beam generation and its applications as well as practical applications of ion implantation.
Author | : Roland A. Fleck |
Publisher | : John Wiley & Sons |
Total Pages | : 741 |
Release | : 2019-04-29 |
Genre | : Science |
ISBN | : 1118654064 |
The go‐to resource for microscopists on biological applications of field emission gun scanning electron microscopy (FEGSEM) The evolution of scanning electron microscopy technologies and capability over the past few years has revolutionized the biological imaging capabilities of the microscope—giving it the capability to examine surface structures of cellular membranes to reveal the organization of individual proteins across a membrane bilayer and the arrangement of cell cytoskeleton at a nm scale. Most notable are their improvements for field emission scanning electron microscopy (FEGSEM), which when combined with cryo-preparation techniques, has provided insight into a wide range of biological questions including the functionality of bacteria and viruses. This full-colour, must-have book for microscopists traces the development of the biological field emission scanning electron microscopy (FEGSEM) and highlights its current value in biological research as well as its future worth. Biological Field Emission Scanning Electron Microscopy highlights the present capability of the technique and informs the wider biological science community of its application in basic biological research. Starting with the theory and history of FEGSEM, the book offers chapters covering: operation (strengths and weakness, sample selection, handling, limitations, and preparation); Commercial developments and principals from the major FEGSEM manufacturers (Thermo Scientific, JEOL, HITACHI, ZEISS, Tescan); technical developments essential to bioFEGSEM; cryobio FEGSEM; cryo-FIB; FEGSEM digital-tomography; array tomography; public health research; mammalian cells and tissues; digital challenges (image collection, storage, and automated data analysis); and more. Examines the creation of the biological field emission gun scanning electron microscopy (FEGSEM) and discusses its benefits to the biological research community and future value Provides insight into the design and development philosophy behind current instrument manufacturers Covers sample handling, applications, and key supporting techniques Focuses on the biological applications of field emission gun scanning electron microscopy (FEGSEM), covering both plant and animal research Presented in full colour An important part of the Wiley-Royal Microscopical Series, Biological Field Emission Scanning Electron Microscopy is an ideal general resource for experienced academic and industrial users of electron microscopy—specifically, those with a need to understand the application, limitations, and strengths of FEGSEM.
Author | : Zengliang Yu |
Publisher | : Springer |
Total Pages | : 0 |
Release | : 2014-11-05 |
Genre | : Science |
ISBN | : 9781489999214 |
Introduction to Ion Bean Biotechnology presents an comprehensive primer on radiation-induced mutations and implantation of charged particles altering biological development. As such, its one of the most intriging and leading tools in bioengineering cells. IIBB cover the physics of ions particles, the biological effects of ion implantations in cells, and the subsequent use in bacteria, in viruses, and in plants. IIBB covers important areas: Inducing genetic mutations on the molecular level Inducing cells to catalyze targeted gene transfer Ion beam technology is a new area, still very young IIBB will be essentinal reading for any student, reseacher, or industry professional seeking to understand and master the mechanisms of such mutations.
Author | : Michael Nastasi |
Publisher | : Cambridge University Press |
Total Pages | : 572 |
Release | : 1996-03-29 |
Genre | : Science |
ISBN | : 052137376X |
Comprehensive guide to an important materials science technique for students and researchers.
Author | : Milos Janecek |
Publisher | : BoD – Books on Demand |
Total Pages | : 302 |
Release | : 2016-02-18 |
Genre | : Science |
ISBN | : 9535122525 |
This book brings a broad review of recent global developments in theory, instrumentation, and practical applications of electron microscopy. It was created by 13 contributions from experts in different fields of electron microscopy and technology from over 20 research institutes worldwide.
Author | : Ivo Utke |
Publisher | : Oxford University Press |
Total Pages | : 830 |
Release | : 2012-03-05 |
Genre | : Technology & Engineering |
ISBN | : 0199920990 |
Nanofabrication Using Focused Ion and Electron Beams presents fundamentals of the interaction of focused ion and electron beams (FIB/FEB) with surfaces, as well as numerous applications of these techniques for nanofabrication involving different materials and devices. The book begins by describing the historical evolution of FIB and FEB systems, applied first for micro- and more recently for nanofabrication and prototyping, practical solutions available in the market for different applications, and current trends in development of tools and their integration in a fast growing field of nanofabrication and nanocharacterization. Limitations of the FIB/FEB techniques, especially important when nanoscale resolution is considered, as well as possible ways to overcome the experimental difficulties in creating new nanodevices and improving resolution of processing, are outlined. Chapters include tutorials describing fundamental aspects of the interaction of beams (FIB/FEB) with surfaces, nanostructures and adsorbed molecules; electron and ion beam chemistries; basic theory, design and configuration of equipment; simulations of processes; basic solutions for nanoprototyping. Emerging technologies as processing by cluster beams are also discussed. In addition, the book considers numerous applications of these techniques (milling, etching, deposition) for nanolithography, nanofabrication and characterization, involving different nanostructured materials and devices. Its main focus is on practical details of using focused ion and electron beams with gas assistance (deposition and etching) and without gas assistance (milling/cutting) for fabrication of devices from the fields of nanoelectronics, nanophotonics, nanomagnetics, functionalized scanning probe tips, nanosensors and other types of NEMS (nanoelectromechanical systems). Special attention is given to strategies designed to overcome limitations of the techniques (e.g., due to damaging produced by energetic ions interacting with matter), particularly those involving multi-step processes and multi-layer materials. Through its thorough demonstration of fundamental concepts and its presentation of a wide range of technologies developed for specific applications, this volume is ideal for researches from many different disciplines, as well as engineers and professors in nanotechnology and nanoscience.