Theoretical Concepts in Physics

Theoretical Concepts in Physics
Author: M. S. Longair
Publisher:
Total Pages: 366
Release: 1984
Genre: Mathematical physics
ISBN: 9780521275538

In this highly individual, and truly novel, approach to theoretical reasoning in physics, the author has provided a course that illuminates the subject from the standpoint of real physics as practised by research scientists. Professor Longair gives the basic insights, attitudes, and techniques that are the tools of the professional physicist, in a manner that conveys the intellectual excitement and beauty of the subject. The book is intended to be a supplement to more traditional courses for physics undergraduates, and the author assumes that his readers already have some knowledge of the main branches of physics. As the story unfolds, much of the core material of an undergraduate course in physics is reviewed from a more mature point of view. This is not, in fact, a substitute for existing texts. Rather it goes beyond them by improving the student's appreciation of the subject.

Introduction to Mathematical Physics

Introduction to Mathematical Physics
Author: Chun Wa Wong
Publisher: OUP Oxford
Total Pages: 731
Release: 2013-01-24
Genre: Science
ISBN: 0191648604

Mathematical physics provides physical theories with their logical basis and the tools for drawing conclusions from hypotheses. Introduction to Mathematical Physics explains to the reader why and how mathematics is needed in the description of physical events in space. For undergraduates in physics, it is a classroom-tested textbook on vector analysis, linear operators, Fourier series and integrals, differential equations, special functions and functions of a complex variable. Strongly correlated with core undergraduate courses on classical and quantum mechanics and electromagnetism, it helps the student master these necessary mathematical skills. It contains advanced topics of interest to graduate students on relativistic square-root spaces and nonlinear systems. It contains many tables of mathematical formulas and references to useful materials on the Internet. It includes short tutorials on basic mathematical topics to help readers refresh their mathematical knowledge. An appendix on Mathematica encourages the reader to use computer-aided algebra to solve problems in mathematical physics. A free Instructor's Solutions Manual is available to instructors who order the book for course adoption.

Introduction to the Basic Concepts of Modern Physics

Introduction to the Basic Concepts of Modern Physics
Author: Carlo Maria Becchi
Publisher: Springer Science & Business Media
Total Pages: 185
Release: 2010-06-04
Genre: Science
ISBN: 8847016169

These notes are designed as a text book for a course on the Modern Physics Theory for undergraduate students. The purpose is providing a rigorous and self-contained presentation of the simplest theoretical framework using elementary mathematical tools. A number of examples of relevant applications and an appropriate list of exercises and answered questions are also given.

Principles of Physical Science

Principles of Physical Science
Author: Donald R. Franceschetti
Publisher: Salem Press
Total Pages: 0
Release: 2017
Genre: SCIENCE
ISBN: 9781682173268

This new resource introduces students and researchers to the fundamentals of the Physical Sciences. Entries are written in easy-to-understand language, so readers can use these entries as a solid starting-off point to develop a thorough understanding of this oftentimes confusing subject matter.

A Framework for K-12 Science Education

A Framework for K-12 Science Education
Author: National Research Council
Publisher: National Academies Press
Total Pages: 400
Release: 2012-02-28
Genre: Education
ISBN: 0309214459

Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.

Black Hole Physics

Black Hole Physics
Author: V. Frolov
Publisher: Springer Science & Business Media
Total Pages: 786
Release: 2012-12-06
Genre: Science
ISBN: 9401151393

It is not an exaggeration to say that one of the most exciting predictions of Einstein's theory of gravitation is that there may exist "black holes": putative objects whose gravitational fields are so strong that no physical bodies or signals can break free of their pull and escape. The proof that black holes do exist, and an analysis of their properties, would have a significance going far beyond astrophysics. Indeed, what is involved is not just the discovery of yet another even if extremely remarkable, astro physical object, but a test of the correctness of our understanding of the properties of space and time in extremely strong gravitational fields. Theoretical research into the properties of black holes, and into the possible corol laries of the hypothesis that they exist, has been carried out with special vigor since the beginning of the 1970's. In addition to those specific features of black holes that are important for the interpretation of their possible astrophysical manifestations, the theory has revealed a number of unexpected characteristics of physical interactions involving black holes. By the middle of the 1980's a fairly detailed understanding had been achieved of the properties of the black holes, their possible astrophysical manifestations, and the specifics of the various physical processes involved. Even though a completely reliable detection of a black hole had not yet been made at that time, several objects among those scrutinized by astrophysicists were considered as strong candidates to be confirmed as being black holes.

Basic Concepts in Physics

Basic Concepts in Physics
Author: Masud Chaichian
Publisher: Springer Science & Business Media
Total Pages: 385
Release: 2013-10-28
Genre: Science
ISBN: 3642195989

"Basic Concepts in Physics: From the Cosmos to Quarks" is the outcome of the authors' long and varied teaching experience in different countries and for different audiences, and gives an accessible and eminently readable introduction to all the main ideas of modern physics. The book’s fresh approach, using a novel combination of historical and conceptual viewpoints, makes it ideal complementary reading to more standard textbooks. The first five chapters are devoted to classical physics, from planetary motion to special relativity, always keeping in mind its relevance to questions of contemporary interest. The next six chapters deal mainly with newer developments in physics, from quantum theory and general relativity to grand unified theories, and the book concludes by discussing the role of physics in living systems. A basic grounding in mathematics is required of the reader, but technicalities are avoided as far as possible; thus complex calculations are omitted so long as the essential ideas remain clear. The book is addressed to undergraduate and graduate students in physics and will also be appreciated by many professional physicists. It will likewise be of interest to students, researchers and teachers of other natural sciences, as well as to engineers, high-school teachers and the curious general reader, who will come to understand what physics is about and how it describes the different phenomena of Nature. Not only will readers of this book learn much about physics, they will also learn to love it.