Atom - Molecule Collision Theory

Atom - Molecule Collision Theory
Author: Richard Barry Bernstein
Publisher: Springer Science & Business Media
Total Pages: 785
Release: 2013-11-11
Genre: Science
ISBN: 1461329132

The broad field of molecular collisions is one of considerable current interest, one in which there is a great deal of research activity, both experi mental and theoretical. This is probably because elastic, inelastic, and reactive intermolecular collisions are of central importance in many of the fundamental processes of chemistry and physics. One small area of this field, namely atom-molecule collisions, is now beginning to be "understood" from first principles. Although the more general subject of the collisions of polyatomic molecules is of great im portance and intrinsic interest, it is still too complex from the viewpoint of theoretical understanding. However, for atoms and simple molecules the essential theory is well developed, and computational methods are sufficiently advanced that calculations can now be favorably compared with experimental results. This "coming together" of the subject (and, incidentally, of physicists and chemists !), though still in an early stage, signals that the time is ripe for an appraisal and review of the theoretical basis of atom-molecule collisions. It is especially important for the experimentalist in the field to have a working knowledge of the theory and computational methods required to describe the experimentally observable behavior of the system. By now many of the alternative theoretical approaches and computational procedures have been tested and intercompared. More-or-Iess optimal methods for dealing with each aspect are emerging. In many cases working equations, even schematic algorithms, have been developed, with assumptions and caveats delineated.

Introduction to Atomic and Molecular Collisions

Introduction to Atomic and Molecular Collisions
Author: R. E. Johnson
Publisher: Springer Science & Business Media
Total Pages: 294
Release: 2012-12-06
Genre: Science
ISBN: 1468484486

In working with graduate students in engineering physics at the University of Virginia on research problems in gas kinetics, radiation biology, ion materials interactions, and upper-atmosphere chemistry, it became quite apparent that there was no satisfactory text available to these students on atomic and molecular collisions. For graduate students in physics and quantum chemistry and researchers in atomic and molecular interactions there are a large number of excellent advanced texts. However, for students in applied science, who require some knowledge and understanding of col lision phenomena, such texts are of little use. These students often have some background in modern physics and/or chemistry but lack graduate level course work in quantum mechanics. Such students, however, tend to have a good intuitive grasp of classical mechanics and have been exposed to wave phenomena in some form (e. g. , electricity and magnetism, acoustics, etc. ). Further, their requirements in using collision processes and employing models do not generally include the use of formal scattering theory, a large fraction of the content of many advanced texts. In fact, most researchers who work in the area of atomic and molecular collisions tend to pride themselves on their ability to describe results using simple theoretical models based on classical and semiclassical methods.

Classical Treatment of Collisions Between Ions and Atoms or Molecules

Classical Treatment of Collisions Between Ions and Atoms or Molecules
Author: Francois Frémont
Publisher: Springer Nature
Total Pages: 247
Release: 2021-12-08
Genre: Science
ISBN: 3030894282

Since the beginning of the twentieth century, many experimental and theoretical works have been devoted to collisions between highly charged ions and atomic and molecular targets. It was realized that quantum mechanics is the only way, a priori, to describe such atomic phenomena. However, since quantum mechanics is very difficult to apply for collision systems with more than two particles, classical methods were very soon introduced and applied to simple collision systems and, subsequently, to more complicated systems. The results obtained by such classical methods were found to be surprisingly good, and classical mechanics is now well established, despite its approximations, as a replacement for or competition with quantum mechanics in many cases. In this book, the author will focus on the development of classical methods for describing collisional and post-collisional processes. The results will be compared with those found using quantum mechanical models, in order to demonstrate the ability of the classical approach to obtain many features and details of collision systems.

R-Matrix Theory of Atomic Collisions

R-Matrix Theory of Atomic Collisions
Author: Philip George Burke
Publisher: Springer Science & Business Media
Total Pages: 750
Release: 2011-03-28
Genre: Science
ISBN: 3642159311

Commencing with a self-contained overview of atomic collision theory, this monograph presents recent developments of R-matrix theory and its applications to a wide-range of atomic molecular and optical processes. These developments include the electron and photon collisions with atoms, ions and molecules which are required in the analysis of laboratory and astrophysical plasmas, multiphoton processes required in the analysis of superintense laser interactions with atoms and molecules and positron collisions with atoms and molecules required in antimatter studies of scientific and technologial importance. Basic mathematical results and general and widely used R-matrix computer programs are summarized in the appendices.

Theory of Slow Atomic Collisions

Theory of Slow Atomic Collisions
Author: E.E. Nikitin
Publisher: Springer Science & Business Media
Total Pages: 445
Release: 2012-12-06
Genre: Science
ISBN: 364282045X

The theory of atom-molecule collisions is one of the basic fields in chemi cal physics. Its most challenging part - the dynamics of chemical reactions - is as yet unresolved, but is developing very quickly. It is here a great help to have an analysis of those parts of collision theory which are already complete, a good example being the theory of atomic collisions in process es specific to chemical physics. It has long been observed that many notions of this theory can also be applied successfully to reactive and unreactive molecular collisions. More over, atomic collisions often represent a touchstone in testing approaches proposed for the solution of more complicated problems. Research on the theory of slow atomic collisions carried out at the Moscow Institute of Chemical Physics has been based on just these ideas. A general viewpoint concerning the setting up and representation of the theory came out of these studies, and appeared to be useful in studying complicated systems as well. It underlies the representation of the theory of slow atomic colli sions in this book.

Electron-Molecule Collisions

Electron-Molecule Collisions
Author: Isao Shimamura
Publisher: Springer Science & Business Media
Total Pages: 578
Release: 2013-11-11
Genre: Science
ISBN: 1461323576

Scattering phenomena play an important role in modern physics. Many significant discoveries have been made through collision experiments. Amongst diverse kinds of collision systems, this book sheds light on the collision of an electron with a molecule. The electron-molecule collision provides a basic scattering problem. It is scattering by a nonspherical, multicentered composite particle with its centers having degrees of freedom of motion. The molecule can even disintegrate, Le., dissociate or ionize into fragments, some or all of which may also be molecules. Although it is a difficult problem, the recent theoretical, experimental, and computational progress has been so significant as to warrant publication of a book that specializes in this field. The progress owes partly to technical develop ments in measurements and computations. No less important has been the great and continuing stimulus from such fields of application as astrophysics, the physics of the earth's upper atmosphere, laser physics, radiation physics, the physics of gas discharges, magnetohydrodynamic power generation, and so on. This book aims at introducing the reader to the problem of electron molecule collisions, elucidating the physics behind the phenomena, and review ing, to some extent, up-to-date important results. This book should be appropri ate for graduate reading in physics and chemistry. We also believe that investi gators in atomic and molecular physics will benefit much from this book.

Fast Ion-atom and Ion-molecule Collisions

Fast Ion-atom and Ion-molecule Collisions
Author: Dzevad Belkic
Publisher: World Scientific
Total Pages: 335
Release: 2013
Genre: Science
ISBN: 9814407135

The principal goal of this book is to provide state-of-the-art coverage of the non-relativistic three- and four-body theories at intermediate and high energy ion-atom and ion-molecule collisions. The focus is on the most frequently studied processes: electron capture, ionization, transfer excitation and transfer ionization. The content is suitable both for graduate students and experienced researchers. For these collisions, the literature has seen enormous renewal of activity in the development and applications of quantum-mechanical theories. This subject is of relevance in several branches of science and technology, like accelerator-based physics, the search for new sources of energy and high temperature fusion of light ions. Other important applications are in life sciences via medicine, where high-energy ion beams are used in radiotherapy for which a number of storage ring accelerators are in full operation, under construction or planned to be built worldwide. Therefore, it is necessary to review this field for its most recent advances with an emphasis on the prospects for multidisciplinary applications.This book is accompanied by Interdisciplinary Research on Particle Collisions and Quantitative Spectroscopy Volume 2 - Fast Collisions of Light Ions with Matter: Charge Exchange and Ionization.

Introduction to the Theory of Collisions of Electrons with Atoms and Molecules

Introduction to the Theory of Collisions of Electrons with Atoms and Molecules
Author: S.P. Khare
Publisher: Springer Science & Business Media
Total Pages: 362
Release: 2012-12-06
Genre: Science
ISBN: 1461506115

An understanding of the collisions between micro particles is of great importance for the number of fields belonging to physics, chemistry, astrophysics, biophysics etc. The present book, a theory for electron-atom and molecule collisions is developed using non-relativistic quantum mechanics in a systematic and lucid manner. The scattering theory is an essential part of the quantum mechanics course of all universities. During the last 30 years, the author has lectured on the topics presented in this book (collisions physics, photon-atom collisions, electron-atom and electron-molecule collisions, "electron-photon delayed coincidence technique", etc.) at many institutions including Wayne State University, Detroit, MI, The University of Western Ontario, Canada, and The Meerut University, India. The present book is the outcome of those lectures and is written to serve as a textbook for post-graduate and pre-PhD students and as a reference book for researchers.

Atomic and Ion Collisions in Solids and at Surfaces

Atomic and Ion Collisions in Solids and at Surfaces
Author: Roger Smith
Publisher: Cambridge University Press
Total Pages: 323
Release: 1997-01-13
Genre: Science
ISBN: 052144022X

A 1997 monograph on simulation for condensed matter physicists, materials scientists, chemists and electrical engineers.

Chemistry 2e

Chemistry 2e
Author: Paul Flowers
Publisher:
Total Pages: 0
Release: 2019-02-14
Genre: Chemistry
ISBN: 9781947172623

Chemistry 2e is designed to meet the scope and sequence requirements of the two-semester general chemistry course. The textbook provides an important opportunity for students to learn the core concepts of chemistry and understand how those concepts apply to their lives and the world around them. The book also includes a number of innovative features, including interactive exercises and real-world applications, designed to enhance student learning. The second edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Substantial improvements have been made in the figures, illustrations, and example exercises that support the text narrative. Changes made in Chemistry 2e are described in the preface to help instructors transition to the second edition.