Introduction To Asymptotic And Special Functions
Download Introduction To Asymptotic And Special Functions full books in PDF, epub, and Kindle. Read online free Introduction To Asymptotic And Special Functions ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : F. W. J. Olver |
Publisher | : Academic Press |
Total Pages | : 589 |
Release | : 2014-05-10 |
Genre | : Mathematics |
ISBN | : 148326744X |
Asymptotics and Special Functions provides a comprehensive introduction to two important topics in classical analysis: asymptotics and special functions. The integrals of a real variable and contour integrals are discussed, along with the Liouville-Green approximation and connection formulas for solutions of differential equations. Differential equations with regular singularities are also considered, with emphasis on hypergeometric and Legendre functions. Comprised of 14 chapters, this volume begins with an introduction to the basic concepts and definitions of asymptotic analysis and special functions, followed by a discussion on asymptotic theories of definite integrals containing a parameter. Contour integrals as well as integrals of a real variable are described. Subsequent chapters deal with the analytic theory of ordinary differential equations; differential equations with regular and irregular singularities; sums and sequences; and connection formulas for solutions of differential equations. The book concludes with an evaluation of methods used in estimating (as opposed to bounding) errors in asymptotic approximations and expansions. This monograph is intended for graduate mathematicians, physicists, and engineers.
Author | : F. W. J. Olver |
Publisher | : Academic Press |
Total Pages | : 312 |
Release | : 2014-05-10 |
Genre | : Mathematics |
ISBN | : 1483267083 |
Introduction to Asymptotics and Special Functions is a comprehensive introduction to two important topics in classical analysis: asymptotics and special functions. The integrals of a real variable are discussed, along with contour integrals and differential equations with regular and irregular singularities. The Liouville-Green approximation is also considered. Comprised of seven chapters, this volume begins with an overview of the basic concepts and definitions of asymptotic analysis and special functions, followed by a discussion on integrals of a real variable. Contour integrals are then examined, paying particular attention to Laplace integrals with a complex parameter and Bessel functions of large argument and order. Subsequent chapters focus on differential equations having regular and irregular singularities, with emphasis on Legendre functions as well as Bessel and confluent hypergeometric functions. A chapter devoted to the Liouville-Green approximation tackles asymptotic properties with respect to parameters and to the independent variable, eigenvalue problems, and theorems on singular integral equations. This monograph is intended for students needing only an introductory course to asymptotics and special functions.
Author | : George E. Andrews |
Publisher | : Cambridge University Press |
Total Pages | : 684 |
Release | : 1999 |
Genre | : Mathematics |
ISBN | : 9780521789882 |
An overview of special functions, focusing on the hypergeometric functions and the associated hypergeometric series.
Author | : Nico M. Temme |
Publisher | : John Wiley & Sons |
Total Pages | : 392 |
Release | : 2011-03-01 |
Genre | : Mathematics |
ISBN | : 1118030818 |
This book gives an introduction to the classical, well-known special functions which play a role in mathematical physics, especially in boundary value problems. Calculus and complex function theory form the basis of the book and numerous formulas are given. Particular attention is given to asymptomatic and numerical aspects of special functions, with numerous references to recent literature provided.
Author | : Norman Bleistein |
Publisher | : Courier Corporation |
Total Pages | : 453 |
Release | : 1986-01-01 |
Genre | : Mathematics |
ISBN | : 0486650820 |
Excellent introductory text, written by two experts, presents a coherent and systematic view of principles and methods. Topics include integration by parts, Watson's lemma, LaPlace's method, stationary phase, and steepest descents. Additional subjects include the Mellin transform method and less elementary aspects of the method of steepest descents. 1975 edition.
Author | : Carlo Viola |
Publisher | : Springer |
Total Pages | : 172 |
Release | : 2016-10-31 |
Genre | : Mathematics |
ISBN | : 3319413457 |
The subjects treated in this book have been especially chosen to represent a bridge connecting the content of a first course on the elementary theory of analytic functions with a rigorous treatment of some of the most important special functions: the Euler gamma function, the Gauss hypergeometric function, and the Kummer confluent hypergeometric function. Such special functions are indispensable tools in "higher calculus" and are frequently encountered in almost all branches of pure and applied mathematics. The only knowledge assumed on the part of the reader is an understanding of basic concepts to the level of an elementary course covering the residue theorem, Cauchy's integral formula, the Taylor and Laurent series expansions, poles and essential singularities, branch points, etc. The book addresses the needs of advanced undergraduate and graduate students in mathematics or physics.
Author | : Richard Askey |
Publisher | : Academic Press |
Total Pages | : 573 |
Release | : 2014-05-10 |
Genre | : Mathematics |
ISBN | : 1483216160 |
Theory and Application of Special Functions contains the proceedings of the Advanced Seminar on Special Functions sponsored by the Mathematics Research Center of the University of Wisconsin-Madison and held from March 31 to April 2, 1975. The seminar tackled the theory and application of special functions and covered topics ranging from the asymptotic estimation of special functions to association schemes and coding theory. Some interesting results, conjectures, and problems are given. Comprised of 13 chapters, this book begins with a survey of computational methods in special functions, followed by a discussion on unsolved problems in the asymptotic estimation of special functions. The reader is then introduced to periodic Bernoulli numbers, summation formulas, and applications; problems and prospects for basic hypergeometric functions; and linear growth models with many types and multidimensional Hahn polynomials. Subsequent chapters explore two-variable analogues of the classical orthogonal polynomials; special functions of matrix and single argument in statistics; and some properties of the determinants of orthogonal polynomials. This monograph is intended primarily for students and practitioners of mathematics.
Author | : Frank Bowman |
Publisher | : Courier Corporation |
Total Pages | : 148 |
Release | : 2012-04-27 |
Genre | : Mathematics |
ISBN | : 0486152995 |
Self-contained text, useful for classroom or independent study, covers Bessel functions of zero order, modified Bessel functions, definite integrals, asymptotic expansions, and Bessel functions of any real order. 226 problems.
Author | : Amparo Gil |
Publisher | : SIAM |
Total Pages | : 431 |
Release | : 2007-01-01 |
Genre | : Mathematics |
ISBN | : 9780898717822 |
Special functions arise in many problems of pure and applied mathematics, mathematical statistics, physics, and engineering. This book provides an up-to-date overview of numerical methods for computing special functions and discusses when to use these methods depending on the function and the range of parameters. Not only are standard and simple parameter domains considered, but methods valid for large and complex parameters are described as well. The first part of the book (basic methods) covers convergent and divergent series, Chebyshev expansions, numerical quadrature, and recurrence relations. Its focus is on the computation of special functions; however, it is suitable for general numerical courses. Pseudoalgorithms are given to help students write their own algorithms. In addition to these basic tools, the authors discuss other useful and efficient methods, such as methods for computing zeros of special functions, uniform asymptotic expansions, Padé approximations, and sequence transformations. The book also provides specific algorithms for computing several special functions (like Airy functions and parabolic cylinder functions, among others).
Author | : Z. X. Wang |
Publisher | : World Scientific |
Total Pages | : 720 |
Release | : 1989 |
Genre | : Mathematics |
ISBN | : 9789971506674 |
Contains the various principal special functions in common use and their basic properties and manipulations. Discusses expansions of functions in infinite series and infinite product and the asymptotic expansion of functions. For physicists, engineers, and mathematicians. Acidic paper. Paper edition (unseen), $38. Annotation copyrighted by Book News, Inc., Portland, OR