Introduction To Antennas And Rf Propagation Analysis
Download Introduction To Antennas And Rf Propagation Analysis full books in PDF, epub, and Kindle. Read online free Introduction To Antennas And Rf Propagation Analysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Dean James Friesen |
Publisher | : Artech House |
Total Pages | : 260 |
Release | : 2021-12-31 |
Genre | : Technology & Engineering |
ISBN | : 1630819298 |
This practical text gives engineers and technicians at all levels an easy-to-follow entry point into the subject of RF/EM wave propagation and antennas. While aimed primarily at those who are entering the field or transitioning from a related field, the book also helps experienced professionals obtain a more refined understanding of the various methodologies and processes in this area. The book covers the essentials, practices, technical details, and considerations needed to help a team of engineers design, install, and/or predict the technical performance of a new (or even existing) one-way, two-antenna (long radiating distance) RF communication system. The chapters are organized logically to walk you step by step through the application processes, showing you proven methods to bring about top performance, while also helping you factor in unanticipated variances, including those caused by the earth itself, earth’s gaseous atmosphere, rain, snow, hail, ice, ionospheric signal attenuation, and EM waves. This kind of understanding and consideration saves time, money, and much frustration in a project. With this book in hand, you will better understand RF/EM wave propagation and the technical vernacular used to describe it; become familiar with the various processes and considerations in analyzing, designing, and predicting the performance of new and existing antenna RF communications systems; and more confidently approach problem solving and possible solutions for reducing signal interference and loss. The chapter contents, while not sparing the reader exposure to radiated RF system design and analysis terminology, are written in a relaxed, conversational tone and easy-to-understand manner, making this a perfect learning tool for those entering or transitioning to this field, as well as an excellent supplement or foundational text for an instructional course. The book’s logically organized and easy-to-access chapter structure also facilitates its use as a bench reference for quick lookup or review.
Author | : John S. Seybold |
Publisher | : John Wiley & Sons |
Total Pages | : 348 |
Release | : 2005-10-03 |
Genre | : Technology & Engineering |
ISBN | : 0471743682 |
An introduction to RF propagation that spans all wireless applications This book provides readers with a solid understanding of the concepts involved in the propagation of electromagnetic waves and of the commonly used modeling techniques. While many books cover RF propagation, most are geared to cellular telephone systems and, therefore, are limited in scope. This title is comprehensive-it treats the growing number of wireless applications that range well beyond the mobile telecommunications industry, including radar and satellite communications. The author's straightforward, clear style makes it easy for readers to gain the necessary background in electromagnetics, communication theory, and probability, so they can advance to propagation models for near-earth, indoor, and earth-space propagation. Critical topics that readers would otherwise have to search a number of resources to find are included: * RF safety chapter provides a concise presentation of FCC recommendations, including application examples, and prepares readers to work with real-world propagating systems * Antenna chapter provides an introduction to a wide variety of antennas and techniques for antenna analysis, including a detailed treatment of antenna polarization and axial ratio; the chapter contains a set of curves that permit readers to estimate polarization loss due to axial ratio mismatch between transmitting and receiving antennas without performing detailed calculations * Atmospheric effects chapter provides curves of typical atmospheric loss, so that expected loss can be determined easily * Rain attenuation chapter features a summary of how to apply the ITU and Crane rain models * Satellite communication chapter provides the details of earth-space propagation analysis including rain attenuation, atmospheric absorption, path length determination and noise temperature determination Examples of widely used models provide all the details and information needed to allow readers to apply the models with confidence. References, provided throughout the book, enable readers to explore particular topics in greater depth. Additionally, an accompanying Wiley ftp site provides supporting MathCad files for select figures in the book. With its emphasis on fundamentals, detailed examples, and comprehensive coverage of models and applications, this is an excellent text for upper-level undergraduate or graduate students, or for the practicing engineer who needs to develop an understanding of propagation phenomena.
Author | : Yi Huang |
Publisher | : John Wiley & Sons |
Total Pages | : 378 |
Release | : 2008-09-15 |
Genre | : Technology & Engineering |
ISBN | : 0470772921 |
Practical, concise and complete reference for the basics of modern antenna design Antennas: from Theory to Practice discusses the basics of modern antenna design and theory. Developed specifically for engineers and designers who work with radio communications, radar and RF engineering, this book offers practical and hands-on treatment of antenna theory and techniques, and provides its readers the skills to analyse, design and measure various antennas. Key features: Provides thorough coverage on the basics of transmission lines, radio waves and propagation, and antenna analysis and design Discusses industrial standard design software tools, and antenna measurement equipment, facilities and techniques Covers electrically small antennas, mobile antennas, UWB antennas and new materials for antennas Also discusses reconfigurable antennas, RFID antennas, Wide-band and multi-band antennas, radar antennas, and MIMO antennas Design examples of various antennas are provided Written in a practical and concise manner by authors who are experts in antenna design, with experience from both academia and industry This book will be an invaluable resource for engineers and designers working in RF engineering, radar and radio communications, seeking a comprehensive and practical introduction to the basics of antenna design. The book can also be used as a textbook for advanced students entering a profession in this field.
Author | : Artem Saakian |
Publisher | : Artech House |
Total Pages | : 422 |
Release | : 2020-12-31 |
Genre | : Technology & Engineering |
ISBN | : 1630818453 |
This completely updated second edition of an Artech House classic provides a thorough introduction to the basic principles of electromagnetic wave propagation of radio frequencies in real-world conditions, fully updated by including new achievements in theory and technology. It serves as an invaluable daily reference for practitioners in the field and as a complete, organized text on the subject. This comprehensive resource covers a wide range of essential topics, from the classification of radio waves, electromagnetic wave theory, and antennas for RF radio links, to the impact of the earth surface on the propagation of ground waves, atmospheric affects in radio wave propagation, and radio wave reception. The book explores the propagation of the ground radio waves, namely the waves that propagate in vicinity of the earth's surface (e.g., guided by that interface), without involvement of any atmospheric effects. Specifics of the high-frequency (HF) radio propagation due to reflections from ionospheric layers is studied, based on commonly used models of the ionospheric vertical profiles. Scattering of the radio waves of UHF and higher frequency bands from the random variations of the tropospheric refraction index (from tiny air turbulences) are also considered by using the principles of statistical radio-physics. Analysis of propagation conditions on real propagation paths, including analysis of the power budget of the VHF/UHF link to assure its stability (percentage of availability within observation time frame), terrestrial, broadcast, mobile, and satellite RF links are presented. The engineering design of the cellular networks, including LTE 4G, 5G and upcoming higher generations is explored. HF propagation predictions for extremely long-range links design for commercial and military applications are explained. Packed with examples and problems, this book provides a theoretical background for astrophysical, aeronomy and geophysical instrumentation design.
Author | : Peter S. Hall |
Publisher | : Artech House |
Total Pages | : 404 |
Release | : 2012 |
Genre | : Technology & Engineering |
ISBN | : 1608073769 |
Now in a newly updated and revised edition, this timely resource provides you with complete and current details on the theory, design, and applications of wireless antennas for on-body electronic systems. The Second Edition offers readers brand new material on advances in physical phantom design and production, recent developments in simulation methods and numerical phantoms, descriptions of methods for simulation of moving bodies, and the use of the body as a transmission channel. You also find a completely revised chapter on channel characterization and antenna design at microwave frequencies. This cutting-edge volume brings you the state-of-the-art in existing applications like Bluetooth headsets together with detailed treatment of techniques, tools, and challenges in developing on-body antennas for an array of medical, emergency response, law enforcement, personal entertainment, and military applications on the horizon. The book briefs you on energy propagation around and into the body and how to estimate performance of on-body wireless links, and then dives into the nuts-and-bolts of designing antenna systems that deliver the goods. It covers on-body communication channels at microwave frequency bands and at low frequency bands, as well as ultra wideband systems for WPANs and WBANs. You get details on body-centric UWB antennas and channels, as well as advances in wearable mobile, EBG, and smart fabricù antennas for cellular and WLAN communications. Chapters on telemedicine applications, such as remote diagnoses, and implantable medical devices cover crucial propagation issues and other obstacles that need to be addressed. Rounding out the coverage is a section on antenna design for body-sensor networks and their emerging military and space applications. Packed with hands-on guidance from noted experts, this volume will be indispensable for your efforts in designing and improving body-centric communication systems.
Author | : Mohammod Ali |
Publisher | : Artech House |
Total Pages | : 310 |
Release | : 2021-05-31 |
Genre | : Technology & Engineering |
ISBN | : 1630817082 |
This exciting new book focuses on the analysis and design of reconfigurable antennas for modern wireless communications, sensing, and radar. It presents the definitions of basic antenna parameters, an overview of RF switches and explains how to characterize their insertion loss, isolation, and power handling issues. Basic reconfigurable antenna building blocks, such as dipoles, monopoles, patches and slots are described, followed by presentations on frequency reconfigurable antennas, pattern reconfigurable antennas, and basic scanning antenna arrays. Switch biasing in an electromagnetic environment is discussed, as well as simulation strategies of reconfigurable antennas, and MIMO (Multiple Input Multiple Output) reconfigurable antennas. Performance characterization of reconfigurable antennas is also presented. The book provides information for the technical professional to design frequency reconfigurable, pattern reconfigurable, and MIMO antennas all relevant for modern wireless communication systems. Readers learn how to select switching devices, bias them properly, and understand their role in the overall reconfigurable antenna design. The book presents practical experimental implementation issues, including losses due to switches, materials, and EMI (Electromagnetic Interference) and shows how to address those.
Author | : Joseph F. White |
Publisher | : John Wiley & Sons |
Total Pages | : 524 |
Release | : 2016-08-01 |
Genre | : Technology & Engineering |
ISBN | : 1119244501 |
This textbook is an introduction to microwave engineering. The scope of this book extends from topics for a first course in electrical engineering, in which impedances are analyzed using complex numbers, through the introduction of transmission lines that are analyzed using the Smith Chart, and on to graduate level subjects, such as equivalent circuits for obstacles in hollow waveguides, analyzed using Green’s Functions. This book is a virtual encyclopedia of circuit design methods. Despite the complexity, topics are presented in a conversational manner for ease of comprehension. The book is not only an excellent text at the undergraduate and graduate levels, but is as well a detailed reference for the practicing engineer. Consider how well informed an engineer will be who has become familiar with these topics as treated in High Frequency Techniques: (in order of presentation) Brief history of wireless (radio) and the Morse code U.S. Radio Frequency Allocations Introduction to vectors AC analysis and why complex numbers and impedance are used Circuit and antenna reciprocity Decibel measure Maximum power transfer Skin effect Computer simulation and optimization of networks LC matching of one impedance to another Coupled Resonators Uniform transmission lines for propagation VSWR, return Loss and mismatch error The Telegrapher Equations (derived) Phase and Group Velocities The Impedance Transformation Equation for lines (derived) Fano's and Bode's matching limits The Smith Chart (derived) Slotted Line impedance measurement Constant Q circles on the Smith Chart Approximating a transmission line with lumped L's and C's ABCD, Z, Y and Scattering matrix analysis methods for circuits Statistical Design and Yield Analysis of products Electromagnetic Fields Gauss's Law Vector Dot Product, Divergence and Curl Static Potential and Gradient Ampere's Law and Vector Curl Maxwell's Equations and their visualization The Laplacian Rectangular, cylindrical and spherical coordinates Skin Effect The Wave Equation The Helmholtz Equations Plane Propagating Waves Rayleigh Fading Circular (elliptic) Polarization Poynting's Theorem EM fields on Transmission Lines Calculating the impedance of coaxial lines Calculating and visualizing the fields in waveguides Propagation constants and waveguide modes The Taylor Series Expansion Fourier Series and Green's Functions Higher order modes and how to suppress them Vector Potential and Retarded Potentials Wire and aperture antennas Radio propagation and path loss Electromagnetic computer simulation of structures Directional couplers The Rat Race Hybrid Even and Odd Mode Analysis applied to the backward wave coupler Network analyzer impedance and transmission measurements Two-port Scattering Parameters (s matrix) The Hybrid Ring coupler The Wilkinson power divider Filter design: Butterworth, Maximally flat & Tchebyscheff responses Filter Q Diplexer, Bandpass and Elliptic filters Richard's Transformation & Kuroda’s Identities Mumford's transmission line stub filters Transistor Amplifier Design: gain, biasing, stability, and conjugate matching Noise in systems, noise figure of an amplifier cascade Amplifier non-linearity, and spurious free dynamic range Statistical Design and Yield Analysis
Author | : Dean James Friesen |
Publisher | : Artech House Publishers |
Total Pages | : 0 |
Release | : 2021-12-31 |
Genre | : Technology & Engineering |
ISBN | : 9781630819286 |
This practical resource covers the basics of electromagnetics, wave propagation, and antennas for radiated RF projects. General, high-level scenarios of one-way, two-antenna RF transmission-reception (also known as the Friis Equation) systems are illustrated. Characteristics of electromagnetic waves, free space loss, multipath loss, and Fresnel zone loss are presented. Antenna groupings, including isotropic point source, wire, aperture, and slot and array are explained. Antenna measurements are also presented, including squared wavelengths, λ2, this electrical sizing resulting in low, medium, and high directivity (gain) antennas. antenna parameters are discussed, as well as mathematical analysis of the selected antennas and parameters, including electric and magnetic field intensity, power density, input impedance, total radiated power, directivity (and gain), efficiency, effective area, and effective height. Receiver noise and received noise that addresses various receiver-internal in-band noise and external noise that can be captured by antennas and sent to receiver-internal RF circuitry are examined. Signal-to-noise ratio (SNR), which discusses the necessity of establishing an appropriate SNR for the RF receiver and received RF signal application whether voice or digital, is presented. Written by an expert in the field with years of practical experience, this book will help readers understand the technical field of antennas and radiated RF wave propagation.
Author | : A. R. Harish |
Publisher | : Oxford Higher Education |
Total Pages | : 424 |
Release | : 2007 |
Genre | : Science |
ISBN | : |
Aimed at a single-semester course on antennas at the undergraduate level, Antennas and Wave Propagation provides a lucid explanation of the fundamentals of antennas and propagation. This student-friendly text also includes simple design procedures along with a large number of examples and exercises.
Author | : Jafar Shaker |
Publisher | : Artech House |
Total Pages | : 237 |
Release | : 2013-11-01 |
Genre | : Technology & Engineering |
ISBN | : 1608074994 |
Reflectarray antennas refer to the class of radiating structures that are comprised of an array of radiating elements, re-radiating the energy that is impinged on them from one or more radiating feeds that are located in free space. The constituent radiators that build a reflectarray can be shaped to bring about some flexibility in the way that antenna operates such as multi band/polarization operation. The printed nature of these elements allow integration of active elements that can further enhance the functionality of the reflectarray. This allows for capabilities such as power amplification, adaptive beam shaping, and beam switching. This resource presents readers with design guidelines along with an ample amount of material on different types of reflectarrays and methods of analysis. This book begins with introductory material on reflectarray antennas and progresses to the presentation of state-of-the-art research in the field. A direct comparison with conventional reflector antennas is provided, focusing on conventional efficiency figures of reflectors. Moreover, this book offers remarks on the future direction of reflectarray research and also potential applications of the technology in face of the emergence of new fabrication techniques to accommodate both passive and active elements.