Introduction to Abelian Model Structures and Gorenstein Homological Dimensions

Introduction to Abelian Model Structures and Gorenstein Homological Dimensions
Author: Marco A. P. Bullones
Publisher: Chapman & Hall/CRC
Total Pages: 0
Release: 2016
Genre: Abelian categories
ISBN: 9781498725347

This book provides a starting point to study the relationship between homological and homotopical algebra. It shows how to obtain new model structures in homological algebra by constructing a pair of compatible complete cotorsion pairs related to a specific homological dimension and then applying the Hovey Correspondence to generate an abelian model structure. The book presents new results in relative homological algebra and model category theory, re-proves some established results, and proves folklore results that are difficult to find in the literature.

Introduction to Abelian Model Structures and Gorenstein Homological Dimensions

Introduction to Abelian Model Structures and Gorenstein Homological Dimensions
Author: Marco A. P. Bullones
Publisher: CRC Press
Total Pages: 347
Release: 2016-08-19
Genre: Mathematics
ISBN: 1315353466

Introduction to Abelian Model Structures and Gorenstein Homological Dimensions provides a starting point to study the relationship between homological and homotopical algebra, a very active branch of mathematics. The book shows how to obtain new model structures in homological algebra by constructing a pair of compatible complete cotorsion pairs related to a specific homological dimension and then applying the Hovey Correspondence to generate an abelian model structure. The first part of the book introduces the definitions and notations of the universal constructions most often used in category theory. The next part presents a proof of the Eklof and Trlifaj theorem in Grothedieck categories and covers M. Hovey’s work that connects the theories of cotorsion pairs and model categories. The final two parts study the relationship between model structures and classical and Gorenstein homological dimensions and explore special types of Grothendieck categories known as Gorenstein categories. As self-contained as possible, this book presents new results in relative homological algebra and model category theory. The author also re-proves some established results using different arguments or from a pedagogical point of view. In addition, he proves folklore results that are difficult to locate in the literature.

Introduction to Abelian Model Structures and Gorenstein Homological Dimensions

Introduction to Abelian Model Structures and Gorenstein Homological Dimensions
Author: Marco A. P. Bullones
Publisher: CRC Press
Total Pages: 370
Release: 2016-08-19
Genre: Mathematics
ISBN: 149872535X

Introduction to Abelian Model Structures and Gorenstein Homological Dimensions provides a starting point to study the relationship between homological and homotopical algebra, a very active branch of mathematics. The book shows how to obtain new model structures in homological algebra by constructing a pair of compatible complete cotorsion pairs related to a specific homological dimension and then applying the Hovey Correspondence to generate an abelian model structure. The first part of the book introduces the definitions and notations of the universal constructions most often used in category theory. The next part presents a proof of the Eklof and Trlifaj theorem in Grothedieck categories and covers M. Hovey’s work that connects the theories of cotorsion pairs and model categories. The final two parts study the relationship between model structures and classical and Gorenstein homological dimensions and explore special types of Grothendieck categories known as Gorenstein categories. As self-contained as possible, this book presents new results in relative homological algebra and model category theory. The author also re-proves some established results using different arguments or from a pedagogical point of view. In addition, he proves folklore results that are difficult to locate in the literature.

Gorenstein Homological Algebra

Gorenstein Homological Algebra
Author: Alina Iacob
Publisher: CRC Press
Total Pages: 214
Release: 2018-08-06
Genre: Mathematics
ISBN: 1351660268

Gorenstein homological algebra is an important area of mathematics, with applications in commutative and noncommutative algebra, model category theory, representation theory, and algebraic geometry. While in classical homological algebra the existence of the projective, injective, and flat resolutions over arbitrary rings are well known, things are a little different when it comes to Gorenstein homological algebra. The main open problems in this area deal with the existence of the Gorenstein injective, Gorenstein projective, and Gorenstein flat resolutions. Gorenstein Homological Algebra is especially suitable for graduate students interested in homological algebra and its applications.

Analytical Methods for Kolmogorov Equations

Analytical Methods for Kolmogorov Equations
Author: Luca Lorenzi
Publisher: CRC Press
Total Pages: 572
Release: 2016-10-04
Genre: Mathematics
ISBN: 1315355620

The second edition of this book has a new title that more accurately reflects the table of contents. Over the past few years, many new results have been proven in the field of partial differential equations. This edition takes those new results into account, in particular the study of nonautonomous operators with unbounded coefficients, which has received great attention. Additionally, this edition is the first to use a unified approach to contain the new results in a singular place.

Elements of Quasigroup Theory and Applications

Elements of Quasigroup Theory and Applications
Author: Victor Shcherbacov
Publisher: CRC Press
Total Pages: 423
Release: 2017-05-12
Genre: Computers
ISBN: 1351646362

This book provides an introduction to quasigroup theory along with new structural results on some of the quasigroup classes. Many results are presented with some of them from mathematicians of the former USSR. These included results have not been published before in the western mathematical literature. In addition, many of the achievements obtained with regard to applications of quasigroups in coding theory and cryptology are described.

Noncommutative Deformation Theory

Noncommutative Deformation Theory
Author: Eivind Eriksen
Publisher: CRC Press
Total Pages: 242
Release: 2017-09-19
Genre: Mathematics
ISBN: 1498796028

Noncommutative Deformation Theory is aimed at mathematicians and physicists studying the local structure of moduli spaces in algebraic geometry. This book introduces a general theory of noncommutative deformations, with applications to the study of moduli spaces of representations of associative algebras and to quantum theory in physics. An essential part of this theory is the study of obstructions of liftings of representations using generalised (matric) Massey products. Suitable for researchers in algebraic geometry and mathematical physics interested in the workings of noncommutative algebraic geometry, it may also be useful for advanced graduate students in these fields.

Spectral and Scattering Theory for Second Order Partial Differential Operators

Spectral and Scattering Theory for Second Order Partial Differential Operators
Author: Kiyoshi Mochizuki
Publisher: CRC Press
Total Pages: 131
Release: 2017-06-01
Genre: Mathematics
ISBN: 1351648942

The book is intended for students of graduate and postgraduate level, researchers in mathematical sciences as well as those who want to apply the spectral theory of second order differential operators in exterior domains to their own field. In the first half of this book, the classical results of spectral and scattering theory: the selfadjointness, essential spectrum, absolute continuity of the continuous spectrum, spectral representations, short-range and long-range scattering are summarized. In the second half, recent results: scattering of Schrodinger operators on a star graph, uniform resolvent estimates, smoothing properties and Strichartz estimates, and some applications are discussed.

Iterative Methods without Inversion

Iterative Methods without Inversion
Author: Anatoly Galperin
Publisher: CRC Press
Total Pages: 143
Release: 2016-11-17
Genre: Mathematics
ISBN: 1315350742

Iterative Methods without Inversion presents the iterative methods for solving operator equations f(x) = 0 in Banach and/or Hilbert spaces. It covers methods that do not require inversions of f (or solving linearized subproblems). The typical representatives of the class of methods discussed are Ulm’s and Broyden’s methods. Convergence analyses of the methods considered are based on Kantorovich’s majorization principle which avoids unnecessary simplifying assumptions like differentiability of the operator or solvability of the equation. These analyses are carried out under a more general assumption about degree of continuity of the operator than traditional Lipschitz continuity: regular continuity. Key Features The methods discussed are analyzed under the assumption of regular continuity of divided difference operator, which is more general and more flexible than the traditional Lipschitz continuity. An attention is given to criterions for comparison of merits of various methods and to the related concept of optimality of a method of certain class. Many publications on methods for solving nonlinear operator equations discuss methods that involve inversion of linearization of the operator, which task is highly problematic in infinite dimensions. Accessible for anyone with minimal exposure to nonlinear functional analysis.

Delay Differential Evolutions Subjected to Nonlocal Initial Conditions

Delay Differential Evolutions Subjected to Nonlocal Initial Conditions
Author: Monica-Dana Burlică
Publisher: CRC Press
Total Pages: 322
Release: 2018-09-03
Genre: Mathematics
ISBN: 1315351684

Filling a gap in the literature, Delay Differential Evolutions Subjected to Nonlocal Initial Conditions reveals important results on ordinary differential equations (ODEs) and partial differential equations (PDEs). It presents very recent results relating to the existence, boundedness, regularity, and asymptotic behavior of global solutions for differential equations and inclusions, with or without delay, subjected to nonlocal implicit initial conditions. After preliminaries on nonlinear evolution equations governed by dissipative operators, the book gives a thorough study of the existence, uniqueness, and asymptotic behavior of global bounded solutions for differential equations with delay and local initial conditions. It then focuses on two important nonlocal cases: autonomous and quasi-autonomous. The authors next discuss sufficient conditions for the existence of almost periodic solutions, describe evolution systems with delay and nonlocal initial conditions, examine delay evolution inclusions, and extend some results to the multivalued case of reaction-diffusion systems. The book concludes with results on viability for nonlocal evolution inclusions.