High-Level Parallel Programming Models and Supportive Environments

High-Level Parallel Programming Models and Supportive Environments
Author: Frank Mueller
Publisher: Springer Science & Business Media
Total Pages: 146
Release: 2001-04-04
Genre: Computers
ISBN: 3540419446

This book constitutes the refereed proceedings of the 6th International Workshop on High-Level Parallel Programming Models and Supportive Environments, HIPS 2001, held in San Francisco, CA, USA in April 2001. The 10 revised full papers presented were carefully reviewed and selected out of 20 submissions. The focus of the book is on high-level programming of networks of workstations, computing clusters, and massively parallel machines. Among the issues addressed are language design, compilers, system architectures, programming tools, and advanced applications.

Parallel and Distributed Processing

Parallel and Distributed Processing
Author: José D. P. Rolim
Publisher: Springer Science & Business Media
Total Pages: 1474
Release: 1999-03-30
Genre: Computers
ISBN: 9783540658313

This book constitutes the refereed proceedings of 11 IPPS/SPDP '98 Workshops held in conjunction with the 13th International Parallel Processing Symposium and the 10th Symposium on Parallel and Distributed Processing in San Juan, Puerto Rico, USA in April 1999. The 126 revised papers presented were carefully selected from a wealth of papers submitted. The papers are organised in topical sections on biologically inspired solutions to parallel processing problems: High-Level Parallel Programming Models and Supportive Environments; Biologically Inspired Solutions to Parallel Processing; Parallel and Distributed Real-Time Systems; Run-Time Systems for Parallel Programming; Reconfigurable Architectures; Java for Parallel and Distributed Computing; Optics and Computer Science; Solving Irregularly Structured Problems in Parallel; Personal Computer Based Workstation Networks; Formal Methods for Parallel Programming; Embedded HPC Systems and Applications.

Programming Models for Parallel Computing

Programming Models for Parallel Computing
Author: Pavan Balaji
Publisher: MIT Press
Total Pages: 488
Release: 2015-11-06
Genre: Computers
ISBN: 0262528819

An overview of the most prominent contemporary parallel processing programming models, written in a unique tutorial style. With the coming of the parallel computing era, computer scientists have turned their attention to designing programming models that are suited for high-performance parallel computing and supercomputing systems. Programming parallel systems is complicated by the fact that multiple processing units are simultaneously computing and moving data. This book offers an overview of some of the most prominent parallel programming models used in high-performance computing and supercomputing systems today. The chapters describe the programming models in a unique tutorial style rather than using the formal approach taken in the research literature. The aim is to cover a wide range of parallel programming models, enabling the reader to understand what each has to offer. The book begins with a description of the Message Passing Interface (MPI), the most common parallel programming model for distributed memory computing. It goes on to cover one-sided communication models, ranging from low-level runtime libraries (GASNet, OpenSHMEM) to high-level programming models (UPC, GA, Chapel); task-oriented programming models (Charm++, ADLB, Scioto, Swift, CnC) that allow users to describe their computation and data units as tasks so that the runtime system can manage computation and data movement as necessary; and parallel programming models intended for on-node parallelism in the context of multicore architecture or attached accelerators (OpenMP, Cilk Plus, TBB, CUDA, OpenCL). The book will be a valuable resource for graduate students, researchers, and any scientist who works with data sets and large computations. Contributors Timothy Armstrong, Michael G. Burke, Ralph Butler, Bradford L. Chamberlain, Sunita Chandrasekaran, Barbara Chapman, Jeff Daily, James Dinan, Deepak Eachempati, Ian T. Foster, William D. Gropp, Paul Hargrove, Wen-mei Hwu, Nikhil Jain, Laxmikant Kale, David Kirk, Kath Knobe, Ariram Krishnamoorthy, Jeffery A. Kuehn, Alexey Kukanov, Charles E. Leiserson, Jonathan Lifflander, Ewing Lusk, Tim Mattson, Bruce Palmer, Steven C. Pieper, Stephen W. Poole, Arch D. Robison, Frank Schlimbach, Rajeev Thakur, Abhinav Vishnu, Justin M. Wozniak, Michael Wilde, Kathy Yelick, Yili Zheng

Designing a Modern Skeleton Programming Framework for Parallel and Heterogeneous Systems

Designing a Modern Skeleton Programming Framework for Parallel and Heterogeneous Systems
Author: August Ernstsson
Publisher: Linköping University Electronic Press
Total Pages: 155
Release: 2020-10-21
Genre:
ISBN: 9179297722

Today's society is increasingly software-driven and dependent on powerful computer technology. Therefore it is important that advancements in the low-level processor hardware are made available for exploitation by a growing number of programmers of differing skill level. However, as we are approaching the end of Moore's law, hardware designers are finding new and increasingly complex ways to increase the accessible processor performance. It is getting more and more difficult to effectively target these processing resources without expert knowledge in parallelization, heterogeneous computation, communication, synchronization, and so on. To ensure that the software side can keep up, advanced programming environments and frameworks are needed to bridge the widening gap between hardware and software. One such example is the pattern-centric skeleton programming model and in particular the SkePU project. The work presented in this thesis first redesigns the SkePU framework based on modern C++ variadic template metaprogramming and state-of-the-art compiler technology. It then explores new ways to improve performance: by providing new patterns, improving the data access locality of existing ones, and using both static and dynamic knowledge about program flow. The work combines novel ideas with practical evaluation of the approach on several applications. The advancements also include the first skeleton API that allows variadic skeletons, new data containers, and finally an approach to make skeleton programming more customizable without compromising universal portability.

Parallel Computing: Software Technology, Algorithms, Architectures & Applications

Parallel Computing: Software Technology, Algorithms, Architectures & Applications
Author: Gerhard Joubert
Publisher: Elsevier
Total Pages: 975
Release: 2004-09-23
Genre: Computers
ISBN: 0080538436

Advances in Parallel Computing series presents the theory and use of of parallel computer systems, including vector, pipeline, array, fifth and future generation computers and neural computers. This volume features original research work, as well as accounts on practical experience with and techniques for the use of parallel computers.

Advances in Computer Systems Architecture

Advances in Computer Systems Architecture
Author: Chris Jesshope
Publisher: Springer
Total Pages: 618
Release: 2006-08-29
Genre: Computers
ISBN: 3540400583

This book constitutes the refereed proceedings of the 11th Asia-Pacific Computer Systems Architecture Conference, ACSAC 2006. The book presents 60 revised full papers together with 3 invited lectures, addressing such issues as processor and network design, reconfigurable computing and operating systems, and low-level design issues in both hardware and systems. Coverage includes large and significant computer-based infrastructure projects, the challenges of stricter budgets in power dissipation, and more.

Network and Parallel Computing

Network and Parallel Computing
Author: Hai Jin
Publisher: Springer
Total Pages: 713
Release: 2004-10-14
Genre: Computers
ISBN: 3540301410

This proceedings contains the papers presented at the 2004 IFIP International Conference on Network and Parallel Computing (NPC 2004), held at Wuhan, China, from October 18 to 20, 2004. The goal of the conference was to establish an international forum for engineers and scientists to present their ideas and experiences in network and parallel computing. A total of 338 submissions were received in response to the call for papers. These papers werefrom Australia, Brazil,Canada,China, Finland, France, G- many, Hong Kong, India, Iran, Italy, Japan, Korea, Luxemburg, Malaysia, N- way, Spain, Sweden, Taiwan, UK, and USA. Each submission was sent to at least three reviewers.Each paper was judged according to its originality,inno- tion, readability, and relevance to the expected audience. Based on the reviews received, a total of 69 papers were accepted to be included in the proceedings. Among the 69 papers, 46 were accepted as full papers and were presented at the conference.Wealso accepted23papersasshortpapers;eachofthesepaperswas given an opportunity to have a brief presentation at the conference, followed by discussions in a poster session. Thus, due to the limited scope and time of the conference and the high number of submissions received, only 20% of the total submissions were included in the ?nal program.

Pro TBB

Pro TBB
Author: Michael Voss
Publisher: Apress
Total Pages: 775
Release: 2019-07-09
Genre: Computers
ISBN: 1484243986

This open access book is a modern guide for all C++ programmers to learn Threading Building Blocks (TBB). Written by TBB and parallel programming experts, this book reflects their collective decades of experience in developing and teaching parallel programming with TBB, offering their insights in an approachable manner. Throughout the book the authors present numerous examples and best practices to help you become an effective TBB programmer and leverage the power of parallel systems. Pro TBB starts with the basics, explaining parallel algorithms and C++'s built-in standard template library for parallelism. You'll learn the key concepts of managing memory, working with data structures and how to handle typical issues with synchronization. Later chapters apply these ideas to complex systems to explain performance tradeoffs, mapping common parallel patterns, controlling threads and overhead, and extending TBB to program heterogeneous systems or system-on-chips. What You'll Learn Use Threading Building Blocks to produce code that is portable, simple, scalable, and more understandableReview best practices for parallelizing computationally intensive tasks in your applications Integrate TBB with other threading packages Create scalable, high performance data-parallel programs Work with generic programming to write efficient algorithms Who This Book Is For C++ programmers learning to run applications on multicore systems, as well as C or C++ programmers without much experience with templates. No previous experience with parallel programming or multicore processors is required.