Environmental Effects on Engineered Materials

Environmental Effects on Engineered Materials
Author: Russell H. Jones
Publisher: CRC Press
Total Pages: 499
Release: 2001-03-29
Genre: Technology & Engineering
ISBN: 0824746015

This invaluable reference provides a comprehensive overview of corrosion and environmental effects on metals, intermetallics, glossy metals, ceramics and composites of metals, and ceramics and polymer materials. It surveys numerous options for various applications involving environments and guidance in materials selection and substitution. Exploring a wide range of environments, including aqueous and high-temperature surroundings, Environmental Effects on Engineered Materials examines specific material-environmental interactions; corrosion rates and material limitations; preventive measurements against corrosion; utilization of older materials in recent applications; the use of new materials for existing equipment; and more.

Twentieth-Century Building Materials

Twentieth-Century Building Materials
Author: Thomas C. Jester
Publisher: Getty Publications
Total Pages: 354
Release: 2014-08-01
Genre: Architecture
ISBN: 1606063251

Over the concluding decades of the twentieth century, the historic preservation community increasingly turned its attention to modern buildings, including bungalows from the 1930s, gas stations and diners from the 1940s, and office buildings and architectural homes from the 1950s. Conservation efforts, however, were often hampered by a lack of technical information about the products used in these structures, and to fill this gap Twentieth-Century Building Materials was developed by the U.S. Department of the Interior’s National Park Service and first published in 1995. Now, this invaluable guide is being reissued—with a new preface by the book’s original editor. With more than 250 illustrations, including a full-color photographic essay, the volume remains an indispensable reference on the history and conservation of modern building materials. Thirty-seven essays written by leading experts offer insights into the history, manufacturing processes, and uses of a wide range of materials, including glass block, aluminum, plywood, linoleum, and gypsum board. Readers will also learn about how these materials perform over time and discover valuable conservation and repair techniques. Bibliographies and sources for further research complete the volume. The book is intended for a wide range of conservation professionals including architects, engineers, conservators, and material scientists engaged in the conservation of modern buildings, as well as scholars in related disciplines.

Comprehensive Nuclear Materials

Comprehensive Nuclear Materials
Author:
Publisher: Elsevier
Total Pages: 4871
Release: 2020-07-22
Genre: Science
ISBN: 0081028660

Materials in a nuclear environment are exposed to extreme conditions of radiation, temperature and/or corrosion, and in many cases the combination of these makes the material behavior very different from conventional materials. This is evident for the four major technological challenges the nuclear technology domain is facing currently: (i) long-term operation of existing Generation II nuclear power plants, (ii) the design of the next generation reactors (Generation IV), (iii) the construction of the ITER fusion reactor in Cadarache (France), (iv) and the intermediate and final disposal of nuclear waste. In order to address these challenges, engineers and designers need to know the properties of a wide variety of materials under these conditions and to understand the underlying processes affecting changes in their behavior, in order to assess their performance and to determine the limits of operation. Comprehensive Nuclear Materials, Second Edition, Seven Volume Set provides broad ranging, validated summaries of all the major topics in the field of nuclear material research for fission as well as fusion reactor systems. Attention is given to the fundamental scientific aspects of nuclear materials: fuel and structural materials for fission reactors, waste materials, and materials for fusion reactors. The articles are written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource of information. Most of the chapters from the first Edition have been revised and updated and a significant number of new topics are covered in completely new material. During the ten years between the two editions, the challenge for applications of nuclear materials has been significantly impacted by world events, public awareness, and technological innovation. Materials play a key role as enablers of new technologies, and we trust that this new edition of Comprehensive Nuclear Materials has captured the key recent developments. Critically reviews the major classes and functions of materials, supporting the selection, assessment, validation and engineering of materials in extreme nuclear environments Comprehensive resource for up-to-date and authoritative information which is not always available elsewhere, even in journals Provides an in-depth treatment of materials modeling and simulation, with a specific focus on nuclear issues Serves as an excellent entry point for students and researchers new to the field

Environmental Degradation of Advanced and Traditional Engineering Materials

Environmental Degradation of Advanced and Traditional Engineering Materials
Author: Lloyd H. Hihara
Publisher: CRC Press
Total Pages: 722
Release: 2013-10-23
Genre: Technology & Engineering
ISBN: 1439819262

One of the main, ongoing challenges for any engineering enterprise is that systems are built of materials subject to environmental degradation. Whether working with an airframe, integrated circuit, bridge, prosthetic device, or implantable drug-delivery system, understanding the chemical stability of materials remains a key element in determining their useful life. Environmental Degradation of Advanced and Traditional Engineering Materials is a monumental work for the field, providing comprehensive coverage of the environmental impacts on the full breadth of materials used for engineering infrastructure, buildings, machines, and components. The book discusses fundamental degradation processes and presents examples of degradation under various environmental conditions. Each chapter presents the basic properties of the class of material, followed by detailed characteristics of degradation, guidelines on how to protect against corrosion, and a description of testing procedures. A complete, self-contained industrial reference guide, this valuable resource is designed for students and professionals interested in the development of deterioration-resistant technological systems constructed with metallurgical, polymeric, ceramic, and natural materials.