Intelligent Techniques For Predictive Data Analytics
Download Intelligent Techniques For Predictive Data Analytics full books in PDF, epub, and Kindle. Read online free Intelligent Techniques For Predictive Data Analytics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Neha Singh |
Publisher | : John Wiley & Sons |
Total Pages | : 276 |
Release | : 2024-07-30 |
Genre | : Computers |
ISBN | : 1394227965 |
Comprehensive resource covering tools and techniques used for predictive analytics with practical applications across various industries Intelligent Techniques for Predictive Data Analytics provides an in-depth introduction of the tools and techniques used for predictive analytics, covering applications in cyber security, network security, data mining, and machine learning across various industries. Each chapter offers a brief introduction on the subject to make the text accessible regardless of background knowledge. Readers will gain a clear understanding of how to use data processing, classification, and analysis to support strategic decisions, such as optimizing marketing strategies and customer relationship management and recommendation systems, improving general business operations, and predicting occurrence of chronic diseases for better patient management. Traditional data analytics uses dashboards to illustrate trends and outliers, but with large data sets, this process is labor-intensive and time-consuming. This book provides everything readers need to save time by performing deep, efficient analysis without human bias and time constraints. A section on current challenges in the field is also included. Intelligent Techniques for Predictive Data Analytics covers sample topics such as: Models to choose from in predictive modeling, including classification, clustering, forecast, outlier, and time series models Price forecasting, quality optimization, and insect and disease plant and monitoring in agriculture Fraud detection and prevention, credit scoring, financial planning, and customer analytics Big data in smart grids, smart grid analytics, and predictive smart grid quality monitoring, maintenance, and load forecasting Management of uncertainty in predictive data analytics and probable future developments in the field Intelligent Techniques for Predictive Data Analytics is an essential resource on the subject for professionals and researchers working in data science or data management seeking to understand the different models of predictive analytics, along with graduate students studying data science courses and professionals and academics new to the field.
Author | : John D. Kelleher |
Publisher | : MIT Press |
Total Pages | : 853 |
Release | : 2020-10-20 |
Genre | : Computers |
ISBN | : 0262361108 |
The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning.
Author | : Mashrur Chowdhury |
Publisher | : Elsevier |
Total Pages | : 346 |
Release | : 2017-04-05 |
Genre | : Business & Economics |
ISBN | : 0128098511 |
Data Analytics for Intelligent Transportation Systems provides in-depth coverage of data-enabled methods for analyzing intelligent transportation systems that includes detailed coverage of the tools needed to implement these methods using big data analytics and other computing techniques. The book examines the major characteristics of connected transportation systems, along with the fundamental concepts of how to analyze the data they produce. It explores collecting, archiving, processing, and distributing the data, designing data infrastructures, data management and delivery systems, and the required hardware and software technologies. Users will learn how to design effective data visualizations, tactics on the planning process, and how to evaluate alternative data analytics for different connected transportation applications, along with key safety and environmental applications for both commercial and passenger vehicles, data privacy and security issues, and the role of social media data in traffic planning. - Includes case studies in each chapter that illustrate the application of concepts covered - Presents extensive coverage of existing and forthcoming intelligent transportation systems and data analytics technologies - Contains contributors from both leading academic and commercial researchers - Explains how to design effective data visualizations, tactics on the planning process, and how to evaluate alternative data analytics for different connected transportation applications
Author | : Kolla Bhanu Prakash |
Publisher | : CRC Press |
Total Pages | : 297 |
Release | : 2021-09-20 |
Genre | : Technology & Engineering |
ISBN | : 1000413314 |
Big Data Analytics and Intelligent Techniques for Smart Cities covers fundamentals, advanced concepts, and applications of big data analytics for smart cities in a single volume. This comprehensive reference text discusses big data theory modeling and simulation for smart cities and examines case studies in a single volume. The text discusses how to develop a smart city and state-of-the-art system design, system verification, real-time control and adaptation, Internet of Things, and testbeds. It covers applications of smart cities as they relate to smart transportation/connected vehicle (CV) and intelligent transportation systems (ITS) for improved mobility, safety, and environmental protection. It will be useful as a reference text for graduate students in different areas including electrical engineering, computer science engineering, civil engineering, and electronics and communications engineering. Features: Technologies and algorithms associated with the application of big data for smart cities Discussions on big data theory modeling and simulation for smart cities Applications of smart cities as they relate to smart transportation and intelligent transportation systems (ITS) Discussions on concepts including smart education, smart culture, and smart transformation management for social and societal changes
Author | : Öner, Sultan Ceren |
Publisher | : IGI Global |
Total Pages | : 250 |
Release | : 2018-12-07 |
Genre | : Computers |
ISBN | : 1522551387 |
In order to survive an increasingly competitive market, corporations must adopt and employ optimization techniques and big data analytics for more efficient product development and value creation. Understanding the strengths, weaknesses, opportunities, and threats of new techniques and manufacturing processes allows companies to succeed during the rise of Industry 4.0. Optimizing Big Data Management and Industrial Systems With Intelligent Techniques explores optimization techniques, recommendation systems, and manufacturing processes that support the evaluation of cyber-physical systems, end-to-end engineering, and digitalized control systems. Featuring coverage on a broad range of topics such as digital economy, fuzzy logic, and data linkage methods, this book is ideally designed for manufacturers, engineers, professionals, managers, academicians, and students.
Author | : Rajendra Akerkar |
Publisher | : Springer |
Total Pages | : 282 |
Release | : 2016-10-11 |
Genre | : Computers |
ISBN | : 3319292064 |
This textbook provides readers with the tools, techniques and cases required to excel with modern artificial intelligence methods. These embrace the family of neural networks, fuzzy systems and evolutionary computing in addition to other fields within machine learning, and will help in identifying, visualizing, classifying and analyzing data to support business decisions./p> The authors, discuss advantages and drawbacks of different approaches, and present a sound foundation for the reader to design and implement data analytic solutions for real‐world applications in an intelligent manner. Intelligent Techniques for Data Science also provides real-world cases of extracting value from data in various domains such as retail, health, aviation, telecommunication and tourism.
Author | : Deepak Gupta |
Publisher | : John Wiley & Sons |
Total Pages | : 428 |
Release | : 2020-07-13 |
Genre | : Technology & Engineering |
ISBN | : 1119544459 |
This book focuses on methods and tools for intelligent data analysis, aimed at narrowing the increasing gap between data gathering and data comprehension, and emphasis will also be given to solving of problems which result from automated data collection, such as analysis of computer-based patient records, data warehousing tools, intelligent alarming, effective and efficient monitoring, and so on. This book aims to describe the different approaches of Intelligent Data Analysis from a practical point of view: solving common life problems with data analysis tools.
Author | : Gupta, Govind P. |
Publisher | : IGI Global |
Total Pages | : 256 |
Release | : 2022-09-16 |
Genre | : Computers |
ISBN | : 1668452669 |
Advanced computational intelligence techniques have been designed and developed in recent years to cope with various big data challenges and provide fast and efficient analytics that assist in making critical decisions. With the rapid evolution and development of internet-based services and applications, this technology is receiving attention from researchers, industries, and academic communities and requires additional study. Convergence of Big Data Technologies and Computational Intelligent Techniques considers recent advancements in big data and computational intelligence across fields and disciplines and discusses the various opportunities and challenges of adoption. Covering topics such as deep learning, data mining, smart environments, and high-performance computing, this reference work is crucial for computer scientists, engineers, industry professionals, researchers, scholars, practitioners, academicians, instructors, and students.
Author | : Vimal K E K |
Publisher | : Springer Nature |
Total Pages | : 206 |
Release | : 2023-09-13 |
Genre | : Technology & Engineering |
ISBN | : 9819948940 |
This book covers topics related to implementation of advanced technologies, such as AI, big data, procurement 4.0, Logistics 4.0 and Lean 4.0, in Industry 4.0 for the manufacturing supply chain. Many applications of Industry 4.0 in the manufacturing supply chain have been presented. The content of this book is useful for students, researchers and professionals in order to implement Industry 4.0 in manufacturing supply chain.
Author | : Ioannis Hatzilygeroudis |
Publisher | : Springer |
Total Pages | : 155 |
Release | : 2017-10-13 |
Genre | : Technology & Engineering |
ISBN | : 3319667904 |
This book presents recent research on the hybridization of intelligent methods, which refers to combining methods to solve complex problems. It discusses hybrid approaches covering different areas of intelligent methods and technologies, such as neural networks, swarm intelligence, machine learning, reinforcement learning, deep learning, agent-based approaches, knowledge-based system and image processing. The book includes extended and revised versions of invited papers presented at the 6th International Workshop on Combinations of Intelligent Methods and Applications (CIMA 2016), held in The Hague, Holland, in August 2016. The book is intended for researchers and practitioners from academia and industry interested in using hybrid methods for solving complex problems.