Integer Partitions

Integer Partitions
Author: George E. Andrews
Publisher: Cambridge University Press
Total Pages: 156
Release: 2004-10-11
Genre: Mathematics
ISBN: 9780521600903

Provides a wide ranging introduction to partitions, accessible to any reader familiar with polynomials and infinite series.

Integer Partitions

Integer Partitions
Author: George E. Andrews
Publisher: Cambridge University Press
Total Pages: 152
Release: 2004-10-11
Genre: Mathematics
ISBN: 9780521841184

The theory of integer partitions is a subject of enduring interest as well as a major research area. It has found numerous applications, including celebrated results such as the Rogers-Ramanujan identities. The aim of this introductory textbook is to provide an accessible and wide-ranging introduction to partitions, without requiring anything more than some familiarity with polynomials and infinite series. Many exercises are included, together with some solutions and helpful hints.

The Theory of Partitions

The Theory of Partitions
Author: George E. Andrews
Publisher: Cambridge University Press
Total Pages: 274
Release: 1998-07-28
Genre: Mathematics
ISBN: 9780521637664

Discusses mathematics related to partitions of numbers into sums of positive integers.

Discrete Mathematics

Discrete Mathematics
Author: Oscar Levin
Publisher: Createspace Independent Publishing Platform
Total Pages: 342
Release: 2016-08-16
Genre:
ISBN: 9781534970748

This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.

Number Theory in the Spirit of Ramanujan

Number Theory in the Spirit of Ramanujan
Author: Bruce C. Berndt
Publisher: American Mathematical Soc.
Total Pages: 210
Release: 2006
Genre: Mathematics
ISBN: 0821841785

Ramanujan is recognized as one of the great number theorists of the twentieth century. Here now is the first book to provide an introduction to his work in number theory. Most of Ramanujan's work in number theory arose out of $q$-series and theta functions. This book provides an introduction to these two important subjects and to some of the topics in number theory that are inextricably intertwined with them, including the theory of partitions, sums of squares and triangular numbers, and the Ramanujan tau function. The majority of the results discussed here are originally due to Ramanujan or were rediscovered by him. Ramanujan did not leave us proofs of the thousands of theorems he recorded in his notebooks, and so it cannot be claimed that many of the proofs given in this book are those found by Ramanujan. However, they are all in the spirit of his mathematics. The subjects examined in this book have a rich history dating back to Euler and Jacobi, and they continue to be focal points of contemporary mathematical research. Therefore, at the end of each of the seven chapters, Berndt discusses the results established in the chapter and places them in both historical and contemporary contexts. The book is suitable for advanced undergraduates and beginning graduate students interested in number theory.

Partitions

Partitions
Author: George E. Andrews
Publisher:
Total Pages: 82
Release: 1979
Genre: Mathematics
ISBN:

Applied Discrete Structures

Applied Discrete Structures
Author: Ken Levasseur
Publisher: Lulu.com
Total Pages: 574
Release: 2012-02-25
Genre: Computers
ISBN: 1105559297

''In writing this book, care was taken to use language and examples that gradually wean students from a simpleminded mechanical approach and move them toward mathematical maturity. We also recognize that many students who hesitate to ask for help from an instructor need a readable text, and we have tried to anticipate the questions that go unasked. The wide range of examples in the text are meant to augment the "favorite examples" that most instructors have for teaching the topcs in discrete mathematics. To provide diagnostic help and encouragement, we have included solutions and/or hints to the odd-numbered exercises. These solutions include detailed answers whenever warranted and complete proofs, not just terse outlines of proofs. Our use of standard terminology and notation makes Applied Discrete Structures a valuable reference book for future courses. Although many advanced books have a short review of elementary topics, they cannot be complete. The text is divided into lecture-length sections, facilitating the organization of an instructor's presentation.Topics are presented in such a way that students' understanding can be monitored through thought-provoking exercises. The exercises require an understanding of the topics and how they are interrelated, not just a familiarity with the key words. An Instructor's Guide is available to any instructor who uses the text. It includes: Chapter-by-chapter comments on subtopics that emphasize the pitfalls to avoid; Suggested coverage times; Detailed solutions to most even-numbered exercises; Sample quizzes, exams, and final exams. This textbook has been used in classes at Casper College (WY), Grinnell College (IA), Luzurne Community College (PA), University of the Puget Sound (WA).''--

Combinatorics of Set Partitions

Combinatorics of Set Partitions
Author: Toufik Mansour
Publisher: CRC Press
Total Pages: 617
Release: 2012-07-27
Genre: Computers
ISBN: 1439863334

Focusing on a very active area of mathematical research in the last decade, Combinatorics of Set Partitions presents methods used in the combinatorics of pattern avoidance and pattern enumeration in set partitions. Designed for students and researchers in discrete mathematics, the book is a one-stop reference on the results and research activities of set partitions from 1500 A.D. to today. Each chapter gives historical perspectives and contrasts different approaches, including generating functions, kernel method, block decomposition method, generating tree, and Wilf equivalences. Methods and definitions are illustrated with worked examples and MapleTM code. End-of-chapter problems often draw on data from published papers and the author’s extensive research in this field. The text also explores research directions that extend the results discussed. C++ programs and output tables are listed in the appendices and available for download on the author’s web page.

Combinatory Analysis

Combinatory Analysis
Author: Percy A. MacMahon
Publisher: Courier Corporation
Total Pages: 770
Release: 2004-07-06
Genre: Mathematics
ISBN: 9780486495866

Account of combinatory analysis theorems shows their connections and unites them as parts of a general doctrine. Topics include symmetric functions, theory of number compositions, more. 1915, 1916, and 1920 editions.

Combinatorics

Combinatorics
Author: Nicholas Loehr
Publisher: CRC Press
Total Pages: 849
Release: 2017-08-10
Genre: Mathematics
ISBN: 149878027X

Combinatorics, Second Edition is a well-rounded, general introduction to the subjects of enumerative, bijective, and algebraic combinatorics. The textbook emphasizes bijective proofs, which provide elegant solutions to counting problems by setting up one-to-one correspondences between two sets of combinatorial objects. The author has written the textbook to be accessible to readers without any prior background in abstract algebra or combinatorics. Part I of the second edition develops an array of mathematical tools to solve counting problems: basic counting rules, recursions, inclusion-exclusion techniques, generating functions, bijective proofs, and linear algebraic methods. These tools are used to analyze combinatorial structures such as words, permutations, subsets, functions, graphs, trees, lattice paths, and much more. Part II cover topics in algebraic combinatorics including group actions, permutation statistics, symmetric functions, and tableau combinatorics. This edition provides greater coverage of the use of ordinary and exponential generating functions as a problem-solving tool. Along with two new chapters, several new sections, and improved exposition throughout, the textbook is brimming with many examples and exercises of various levels of difficulty.