Plant Systems Biology

Plant Systems Biology
Author: Sacha Baginsky
Publisher: Springer Science & Business Media
Total Pages: 362
Release: 2007-06-25
Genre: Science
ISBN: 376437439X

This volume aims to provide a timely view of the state-of-the-art in systems biology. The editors take the opportunity to define systems biology as they and the contributing authors see it, and this will lay the groundwork for future studies. The volume is well-suited to both students and researchers interested in the methods of systems biology. Although the focus is on plant systems biology, the proposed material could be suitably applied to any organism.

Advances in Selected Plant Physiology Aspects

Advances in Selected Plant Physiology Aspects
Author: Giuseppe Montanaro
Publisher: BoD – Books on Demand
Total Pages: 402
Release: 2012-04-25
Genre: Science
ISBN: 9535105574

The book provides general principles and new insights of some plant physiology aspects covering abiotic stress, plant water relations, mineral nutrition and reproduction. Plant response to reduced water availability and other abiotic stress (e.g. metals) have been analysed through changes in water absorption and transport mechanisms, as well as by molecular and genetic approach. A relatively new aspects of fruit nutrition are presented in order to provide the basis for the improvement of some fruit quality traits. The involvement of hormones, nutritional and proteomic plant profiles together with some structure/function of sexual components have also been addressed. Written by leading scientists from around the world it may serve as source of methods, theories, ideas and tools for students, researchers and experts in that areas of plant physiology.

Nuclear Architecture and Dynamics

Nuclear Architecture and Dynamics
Author: Christophe Lavelle
Publisher: Academic Press
Total Pages: 620
Release: 2017-10-27
Genre: Science
ISBN: 012803503X

Nuclear Architecture and Dynamics provides a definitive resource for (bio)physicists and molecular and cellular biologists whose research involves an understanding of the organization of the genome and the mechanisms of its proper reading, maintenance, and replication by the cell. This book brings together the biochemical and physical characteristics of genome organization, providing a relevant framework in which to interpret the control of gene expression and cell differentiation. It includes work from a group of international experts, including biologists, physicists, mathematicians, and bioinformaticians who have come together for a comprehensive presentation of the current developments in the nuclear dynamics and architecture field. The book provides the uninitiated with an entry point to a highly dynamic, but complex issue, and the expert with an opportunity to have a fresh look at the viewpoints advocated by researchers from different disciplines. Highlights the link between the (bio)chemistry and the (bio)physics of chromatin Deciphers the complex interplay between numerous biochemical factors at task in the nucleus and the physical state of chromatin Provides a collective view of the field by a large, diverse group of authors with both physics and biology backgrounds

Plant Pattern Recognition Receptors

Plant Pattern Recognition Receptors
Author: Libo Shan
Publisher:
Total Pages: 358
Release: 2017
Genre: Botany
ISBN: 9781493968596

"This volume covers protocols on techniques ranging from MAMP isolations from diverse microorganisms, PRR identifications from different plant species, MAMP-PRR binding, and a series of signaling responses and events revealed by various biochemical, cellular, genetic and bioinformatic tools. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Plant Pattern Recognition Receptors: Methods and Protocolsaims to ensure successful results in the further study of this vital field." -- OCLC.

Plant Performance Under Environmental Stress

Plant Performance Under Environmental Stress
Author: Azamal Husen
Publisher: Springer Nature
Total Pages: 604
Release: 2021-08-23
Genre: Science
ISBN: 3030785211

Global climate change is bound to create a number of abiotic and biotic stresses in the environment, which would affect the overall growth and productivity of plants. Like other living beings, plants have the ability to protect themselves by evolving various mechanisms against stresses, despite being sessile in nature. They manage to withstand extremes of temperature, drought, flooding, salinity, heavy metals, atmospheric pollution, toxic chemicals and a variety of living organisms, especially viruses, bacteria, fungi, nematodes, insects and arachnids and weeds. Incidence of abiotic stresses may alter the plant-pest interactions by enhancing susceptibility of plants to pathogenic organisms. These interactions often change plant response to abiotic stresses. Plant growth regulators modulate plant responses to biotic and abiotic stresses, and regulate their growth and developmental cascades. A number of physiological and molecular processes that act together in a complex regulatory network, further manage these responses. Crosstalk between autophagy and hormones also occurs to develop tolerance in plants towards multiple abiotic stresses. Similarly, biostimulants, in combination with correct agronomic practices, have shown beneficial effects on plant metabolism due to the hormonal activity that stimulates different metabolic pathways. At the same time, they reduce the use of agrochemicals and impart tolerance to biotic and abiotic stress. Further, the use of bio- and nano-fertilizers seem to hold promise to improve the nutrient use efficiency and hence the plant yield under stressful environments. It has also been shown that the seed priming agents impart stress tolerance. Additionally, tolerance or resistance to stress may also be induced by using specific chemical compounds such as polyamines, proline, glycine betaine, hydrogen sulfide, silicon, β-aminobutyric acid, γ-aminobutyric acid and so on. This book discusses the advances in plant performance under stressful conditions. It should be very useful to graduate students, researchers, and scientists in the fields of botanical science, crop science, agriculture, horticulture, ecological and environmental science.

Molecular Plant Breeding

Molecular Plant Breeding
Author: Yunbi Xu
Publisher: CABI
Total Pages: 756
Release: 2010
Genre: Science
ISBN: 1845936248

Recent advances in plant genomics and molecular biology have revolutionized our understanding of plant genetics, providing new opportunities for more efficient and controllable plant breeding. Successful techniques require a solid understanding of the underlying molecular biology as well as experience in applied plant breeding. Bridging the gap between developments in biotechnology and its applications in plant improvement, Molecular Plant Breeding provides an integrative overview of issues from basic theories to their applications to crop improvement including molecular marker technology, gene mapping, genetic transformation, quantitative genetics, and breeding methodology.

Plant Physiology: Theory and Applications

Plant Physiology: Theory and Applications
Author: S. L. Kochhar
Publisher: Cambridge University Press
Total Pages: 895
Release: 2020-12-03
Genre: Science
ISBN: 1108486398

This edition provides a comprehensive overview of the rapidly advancing field of plant physiology, supplemented with experimental exercises.

Plant Ecophysiology

Plant Ecophysiology
Author: Majeti Narasimha Vara Prasad
Publisher: John Wiley & Sons
Total Pages: 562
Release: 1996-12-24
Genre: Science
ISBN: 9780471131571

Twenty-nine, prominent, international researchers provide contributions which deal with understanding the basic ecophysiological and molecular principles governing the functioning of plant systems in relation to their environment. Divided into two headings: biotic and abiotic; the first consists of abiotic, natural environmental factors--light, ultraviolet radiation, chilling and freezing, high temperatures, drought, flooding, salt and trace metals. The latter half presents anthropogenic aspects including allelochemicals, herbicides, polyamines, air pollutants, carbon dioxide, radioisotopes and fire.