Innervation Of The Gut
Download Innervation Of The Gut full books in PDF, epub, and Kindle. Read online free Innervation Of The Gut ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Simon Brookes |
Publisher | : CRC Press |
Total Pages | : 560 |
Release | : 2003-08-27 |
Genre | : Medical |
ISBN | : 9781134454822 |
The long tube that makes up the gastrointestinal tract is composed of a variety of tissue types and is the largest internal organ of the body. Its main function is to digest food and absorb the released nutrients. Furthermore, it is subdivided into functionally distinct regions that each mediate one of a variety of actions upon the food consumed, including ingestion, propulsion, secretion, digestion, absorption and expulsion. Autonomic neuronal circuitry is intimately involved in controlling many of these multiple functions of the gut, making it an appealing subject for the study of neuroscientists. This book reviews the state of current knowledge on the innervation of the gut by the enteric nervous system, and its interface with the extrinsic innervation, from a number of different perspectives, with the aim of providing a comprehensive and accessible account of the subject.
Author | : John Barton Furness |
Publisher | : |
Total Pages | : 312 |
Release | : 1987 |
Genre | : Medical |
ISBN | : |
Author | : Mark Lyte |
Publisher | : Springer |
Total Pages | : 440 |
Release | : 2014-07-05 |
Genre | : Science |
ISBN | : 1493908979 |
The field of microbial endocrinology is expressly devoted to understanding the mechanisms by which the microbiota (bacteria within the microbiome) interact with the host (“us”). This interaction is a two-way street and the driving force that governs these interactions are the neuroendocrine products of both the host and the microbiota. Chapters include neuroendocrine hormone-induced changes in gene expression and microbial endocrinology and probiotics. This is the first in a series of books dedicated to understanding how bi-directional communication between host and bacteria represents the cutting edge of translational medical research, and hopefully identifies new ways to understand the mechanisms that determine health and disease.
Author | : David Grundy |
Publisher | : Morgan & Claypool Publishers |
Total Pages | : 137 |
Release | : 2011-12 |
Genre | : Science |
ISBN | : 1615043578 |
The gastrointestinal tract is a long, muscular tube responsible for the digestion of food, assimilation of nutrients and elimination of waste. This is achieved by secretion of digestive enzymes and absorption from the intestinal lumen, with different regions playing specific roles in the processing of specific nutrients. These regions come into play sequentially as ingested material is moved along the length of the GI tract by contractions of the muscle layers. In some regions like the oesophagus transit it rapid and measured in seconds while in others like the colon transit is measured in hours and even days, commensurate with the relative slow fermentation that takes place in the large bowel. An hierarchy of controls, neural and endocrine, serve to regulate the various cellular targets that exist in the gut wall. These include muscle cells for contraction and epithelial cells for secretion and absorption. However, there are complex interactions between these digestive mechanisms and other mechanisms that regulate blood flow, immune function, endocrine secretion and food intake. These ensure a fine balance between the ostensibly conflicting tasks of digestion and absorption and protection from potentially harmful ingested materials. They match assimilation of nutrients with hunger and satiety and they ensure that regions of the GI tract that are meters apart work together in a coordinated fashion to match these diverse functions to the digestive needs of the individual. This ebook will provide an overview of the neural mechanisms that control gastrointestinal function. Table of Contents: Neural Control of Gastrointestinal Function / Cells and Tissues / Enteric Nervous System / From Gut to CNS: Extrinsic Sensory Innervation / Sympathetic Innervation of the Gut / Parasympathetic Innervation of the Gut / Integration of Function / References
Author | : Niall Hyland |
Publisher | : Academic Press |
Total Pages | : 512 |
Release | : 2016-05-13 |
Genre | : Medical |
ISBN | : 0128025441 |
The Gut-Brain Axis: Dietary, Probiotic, and Prebiotic Interventions on the Microbiota examines the potential for microbial manipulation as a therapeutic avenue in central nervous system disorders in which an altered microbiota has been implicated, and explores the mechanisms, sometimes common, by which the microbiota may contribute to such disorders. - Focuses on specific areas in which the microbiota has been implicated in gut-brain communication - Examines common mechanisms and pathways by which the microbiota may influence brain and behavior - Identifies novel therapeutic strategies targeted toward the microbiota in the management of brain activity and behavior
Author | : Sushil K. Sarna |
Publisher | : Biota Publishing |
Total Pages | : 159 |
Release | : 2010-11-01 |
Genre | : Medical |
ISBN | : 1615041516 |
Three distinct types of contractions perform colonic motility functions. Rhythmic phasic contractions (RPCs) cause slow net distal propulsion with extensive mixing/turning over. Infrequently occurring giant migrating contractions (GMCs) produce mass movements. Tonic contractions aid RPCs in their motor function. The spatiotemporal patterns of these contractions differ markedly. The amplitude and distance of propagation of a GMC are several-fold larger than those of an RPC. The enteric neurons and smooth muscle cells are the core regulators of all three types of contractions. The regulation of contractions by these mechanisms is modifiable by extrinsic factors: CNS, autonomic neurons, hormones, inflammatory mediators, and stress mediators. Only the GMCs produce descending inhibition, which accommodates the large bolus being propelled without increasing muscle tone. The strong compression of the colon wall generates afferent signals that are below nociceptive threshold in healthy subjects. However, these signals become nociceptive; if the amplitudes of GMCs increase, afferent nerves become hypersensitive, or descending inhibition is impaired. The GMCs also provide the force for rapid propulsion of feces and descending inhibition to relax the internal anal sphincter during defecation. The dysregulation of GMCs is a major factor in colonic motility disorders: irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and diverticular disease (DD). Frequent mass movements by GMCs cause diarrhea in diarrhea predominant IBS, IBD, and DD, while a decrease in the frequency of GMCs causes constipation. The GMCs generate the afferent signals for intermittent short-lived episodes of abdominal cramping in these disorders. Epigenetic dysregulation due to adverse events in early life is one of the major factors in generating the symptoms of IBS in adulthood.
Author | : Institute of Medicine |
Publisher | : National Academies Press |
Total Pages | : 198 |
Release | : 2015-02-27 |
Genre | : Medical |
ISBN | : 0309366860 |
On July 9-10, 2014, the Institute of Medicine's Food Forum hosted a public workshop to explore emerging and rapidly developing research on relationships among the brain, the digestive system, and eating behavior. Drawing on expertise from the fields of nutrition and food science, animal and human physiology and behavior, and psychology and psychiatry as well as related fields, the purpose of the workshop was to (1) review current knowledge on the relationship between the brain and eating behavior, explore the interaction between the brain and the digestive system, and consider what is known about the brain's role in eating patterns and consumer choice; (2) evaluate current methods used to determine the impact of food on brain activity and eating behavior; and (3) identify gaps in knowledge and articulate a theoretical framework for future research. Relationships among the Brain, the Digestive System, and Eating Behavior summarizes the presentations and discussion of the workshop.
Author | : John F. Reinus |
Publisher | : John Wiley & Sons |
Total Pages | : 210 |
Release | : 2014-05-05 |
Genre | : Medical |
ISBN | : 0470674849 |
Gastroenterologists require detailed knowledge regarding the anatomy of the GI system in order to understand the disturbances caused by diseases they diagnose and treat. Gastrointestinal Anatomy and Physiology will bring together the world’s leading names to present a comprehensive overview of the anatomical and physiological features of the gastrointestinal tract. Full colour and with excellent anatomical and clinical figures throughout, it will provide succinct, authoritative and didactic anatomic and physiologic information on all the key areas, including GI motility, hepatic structure, GI hormones, gastric secretion and absorption of nutrients. GI trainees will enjoy the self-assessment MCQs, written to the level they will encounter during their Board exams, and the seasoned gastroenterologist will value it as a handy reference book and refresher for re-certification exams
Author | : J. Gordon Betts |
Publisher | : |
Total Pages | : 0 |
Release | : 2013-04-25 |
Genre | : |
ISBN | : 9781947172807 |
Author | : Ravinder Mittal |
Publisher | : Morgan & Claypool Publishers |
Total Pages | : 87 |
Release | : 2011 |
Genre | : Medical |
ISBN | : 1615043330 |
Deglutition or a swallow begins as a voluntary act in the oral cavity but proceeds autonomously in the pharynx and esophagus. Bilateral sequenced activation and inhibition of more than 25 pairs of muscles of mouth, pharynx, larynx, and esophagus is required during a swallow. A single swallow elicits peristalsis in the pharynx and esophagus along with relaxation of upper and lower esophageal sphincters. Multiple swallows, at closely spaced time intervals, demonstrate deglutitive inhibition; sphincters remain relaxed during the entire period, but only the last swallow elicits peristalsis. Laryngeal inlet closure or airway protection is very important during swallow. Upper part of the esophagus that includes upper esophageal sphincter is composed of skeletal muscles, middle esophagus is composed of a mixture of skeletal and smooth muscles, and lower esophagus, including lower esophageal sphincter, is composed of smooth muscles. Peristalsis progresses in seamless fashion, despite separate control mechanism, from the skeletal to smooth muscle esophagus. The esophagus's circular and longitudinal muscle layers contract synchronously during peristalsis. Sphincters maintain continuous tone; neuromuscular mechanisms for tonic closure in the upper and lower esophageal sphincters are different. Lower esophageal sphincter transient relaxation, belching mechanism, regurgitation, vomiting, and reflux are mediated via the brain stem. Table of Contents: Introduction / Central Program Generator and Brain Stem / Pharynx-Anatomy, Neural Innervation, and Motor Pattern / Upper Esophageal Sphincter / Neuromuscular Anatomy of Esophagus and Lower Esophageal Sphincter / Extrinsic Innervation: Parasympathetic and Sympathetic / Interstitial Cells of Cajal / Recording Techniques / Motor Patterns of the Esophagus-Aboral and Oral Transport / Deglutitive Inhibition and Muscle Refractoriness / Peristalsis in the Circular and Longitudinal Muscles of the Esophagus / Neural and Myogenic Mechanism of Peristalsis / Central Mechanism of Peristalsis-Cortical and Brain Stem Control / Peripheral Mechanisms of Peristalsis / Central Versus Peripheral Mechanism of Deglutitive Inhibition / Neural Control of Longitudinal Muscle Contraction / Modulation of Primary and Secondary Peristalsis / Neural Control of Lower Esophageal Sphincter and Crural Diaphragm / Lower Esophageal Sphincter / Swallow-Induced LES Relaxation / Crural Diaphragm Contribution to EGJ and Neural Control / Transient LES Relaxation and Pharmacological Inhibition / Compliance of the EGJ / References