Initial Value Methods for Boundary Value Problems: Theory and Application of Invariant Imbedding

Initial Value Methods for Boundary Value Problems: Theory and Application of Invariant Imbedding
Author:
Publisher: Academic Press
Total Pages: 237
Release: 1973-08-15
Genre: Mathematics
ISBN: 0080956092

In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression.- Best operator approximation,- Non-Lagrange interpolation,- Generic Karhunen-Loeve transform- Generalised low-rank matrix approximation- Optimal data compression- Optimal nonlinear filtering

Factorization of Boundary Value Problems Using the Invariant Embedding Method

Factorization of Boundary Value Problems Using the Invariant Embedding Method
Author: Jacques Henry
Publisher: Elsevier
Total Pages: 258
Release: 2016-11-09
Genre: Mathematics
ISBN: 0081010907

Factorization Method for Boundary Value Problems by Invariant Embedding presents a new theory for linear elliptic boundary value problems. The authors provide a transformation of the problem in two initial value problems that are uncoupled, enabling you to solve these successively. This method appears similar to the Gauss block factorization of the matrix, obtained in finite dimension after discretization of the problem. This proposed method is comparable to the computation of optimal feedbacks for linear quadratic control problems. - Develops the invariant embedding technique for boundary value problems - Makes a link between control theory, boundary value problems and the Gauss factorization - Presents a new theory for successively solving linear elliptic boundary value problems - Includes a transformation in two initial value problems that are uncoupled

Handbook of Differential Equations

Handbook of Differential Equations
Author: Daniel Zwillinger
Publisher: Academic Press
Total Pages: 694
Release: 2014-05-12
Genre: Mathematics
ISBN: 1483220966

Handbook of Differential Equations is a handy reference to many popular techniques for solving and approximating differential equations, including exact analytical methods, approximate analytical methods, and numerical methods. Topics covered range from transformations and constant coefficient linear equations to finite and infinite intervals, along with conformal mappings and the perturbation method. Comprised of 180 chapters, this book begins with an introduction to transformations as well as general ideas about differential equations and how they are solved, together with the techniques needed to determine if a partial differential equation is well-posed or what the "natural" boundary conditions are. Subsequent sections focus on exact and approximate analytical solution techniques for differential equations, along with numerical methods for ordinary and partial differential equations. This monograph is intended for students taking courses in differential equations at either the undergraduate or graduate level, and should also be useful for practicing engineers or scientists who solve differential equations on an occasional basis.

Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations

Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations
Author: A.K. Aziz
Publisher: Academic Press
Total Pages: 380
Release: 2014-05-10
Genre: Mathematics
ISBN: 1483267997

Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations covers the proceedings of the 1974 Symposium by the same title, held at the University of Maryland, Baltimore Country Campus. This symposium aims to bring together a number of numerical analysis involved in research in both theoretical and practical aspects of this field. This text is organized into three parts encompassing 15 chapters. Part I reviews the initial and boundary value problems. Part II explores a large number of important results of both theoretical and practical nature of the field, including discussions of the smooth and local interpolant with small K-th derivative, the occurrence and solution of boundary value reaction systems, the posteriori error estimates, and boundary problem solvers for first order systems based on deferred corrections. Part III highlights the practical applications of the boundary value problems, specifically a high-order finite-difference method for the solution of two-point boundary-value problems on a uniform mesh. This book will prove useful to mathematicians, engineers, and physicists.

Wave Propagation

Wave Propagation
Author: N.D. Bellman
Publisher: Springer Science & Business Media
Total Pages: 382
Release: 2012-12-06
Genre: Mathematics
ISBN: 9400952279

Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The SCQlldIII of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gu!ik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with . physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They· draw upon widely different sections of mathematics.

Boundary Value Problems From Higher Order Differential Equations

Boundary Value Problems From Higher Order Differential Equations
Author: Ravi P Agarwal
Publisher: World Scientific
Total Pages: 321
Release: 1986-07-01
Genre: Mathematics
ISBN: 9814513636

Contents: Some ExamplesLinear ProblemsGreen's FunctionMethod of Complementary FunctionsMethod of AdjointsMethod of ChasingSecond Order EquationsError Estimates in Polynomial InterpolationExistence and UniquenessPicard's and Approximate Picard's MethodQuasilinearization and Approximate QuasilinearizationBest Possible Results: Weight Function TechniqueBest Possible Results: Shooting MethodsMonotone Convergence and Further ExistenceUniqueness Implies ExistenceCompactness Condition and Generalized SolutionsUniqueness Implies UniquenessBoundary Value FunctionsTopological MethodsBest Possible Results: Control Theory MethodsMatching MethodsMaximal SolutionsMaximum PrincipleInfinite Interval ProblemsEquations with Deviating Arguments Readership: Graduate students, numerical analysts as well as researchers who are studying open problems. Keywords:Boundary Value Problems;Ordinary Differential Equations;Green's Function;Quasilinearization;Shooting Methods;Maximal Solutions;Infinite Interval Problems

Codes for Boundary-Value Problems in Ordinary Differential Equations

Codes for Boundary-Value Problems in Ordinary Differential Equations
Author: B. Childs
Publisher: Springer Science & Business Media
Total Pages: 408
Release: 1979-10
Genre: Computers
ISBN: 9783540095545

Conceptually, a database consists of objects and relationships. Object Relationship Notation (ORN) is a simple notation that more precisely defines relationships by combining UML multiplicities with uniquely defined referential actions. Object Relationship Notation (ORN) for Database Applications: Enhancing the Modeling and Implementation of Associations shows how ORN can be used in UML class diagrams & database definition languages (DDLs) to better model & implement relationships & thus more productively develop database applications. For the database developer, it presents many examples of relationships modeled using ORN-extended class diagrams & shows how these relationships are easily mapped to an ORN-extended SQL or Object DDL. For the DBMS developer, it presents the specifications & algorithms needed to implement ORN in a relational and object DBMS. This book also describes tools that can be downloaded or accessed via the Web. These tools allow databases to be modeled using ORN and implemented using automatic code generation that adds ORN support to Microsoft SQL Server and Progress Object Store.

Numerical Solution of Boundary Value Problems for Ordinary Differential Equations

Numerical Solution of Boundary Value Problems for Ordinary Differential Equations
Author: Uri M. Ascher
Publisher: SIAM
Total Pages: 620
Release: 1994-12-01
Genre: Mathematics
ISBN: 9781611971231

This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner.

Numerical Methods for Fractional Differentiation

Numerical Methods for Fractional Differentiation
Author: Kolade M. Owolabi
Publisher: Springer Nature
Total Pages: 338
Release: 2019-10-14
Genre: Mathematics
ISBN: 9811500983

This book discusses numerical methods for solving partial differential and integral equations, as well as ordinary differential and integral equations, involving fractional differential and integral operators. Differential and integral operators presented in the book include those with exponential decay law, known as Caputo–Fabrizio differential and integral operators, those with power law, known as Riemann–Liouville fractional operators, and those for the generalized Mittag–Leffler function, known as the Atangana–Baleanu fractional operators. The book reviews existing numerical schemes associated with fractional operators including those with power law, while also highlighting new trends in numerical schemes for recently introduced differential and integral operators. In addition, the initial chapters address useful properties of each differential and integral fractional operator. Methods discussed in the book are subsequently used to solved problems arising in many fields of science, technology, and engineering, including epidemiology, chaos, solitons, fractals, diffusion, groundwater, and fluid mechanics. Given its scope, the book offers a valuable resource for graduate students of mathematics and engineering, and researchers in virtually all fields of science, technology, and engineering, as well as an excellent addition to libraries.