Informational Limits In Optical Polarimetry And Vectorial Imaging
Download Informational Limits In Optical Polarimetry And Vectorial Imaging full books in PDF, epub, and Kindle. Read online free Informational Limits In Optical Polarimetry And Vectorial Imaging ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Matthew R. Foreman |
Publisher | : Springer Science & Business Media |
Total Pages | : 240 |
Release | : 2012-03-23 |
Genre | : Science |
ISBN | : 3642285287 |
Central to this thesis is the characterisation and exploitation of electromagnetic properties of light in imaging and measurement systems. To this end an information theoretic approach is used to formulate a hitherto lacking, quantitative definition of polarisation resolution, and to establish fundamental precision limits in electromagnetic systems. Furthermore rigorous modelling tools are developed for propagation of arbitrary electromagnetic fields, including for example stochastic fields exhibiting properties such as partial polarisation, through high numerical aperture optics. Finally these ideas are applied to the development, characterisation and optimisation of a number of topical optical systems: polarisation imaging; multiplexed optical data storage; and single molecule measurements. The work has implications for all optical imaging systems where polarisation of light is of concern.
Author | : Matthew R. Foreman |
Publisher | : Springer Science & Business Media |
Total Pages | : 240 |
Release | : 2012-03-23 |
Genre | : Science |
ISBN | : 3642285279 |
Central to this thesis is the characterisation and exploitation of electromagnetic properties of light in imaging and measurement systems. To this end an information theoretic approach is used to formulate a hitherto lacking, quantitative definition of polarisation resolution, and to establish fundamental precision limits in electromagnetic systems. Furthermore rigorous modelling tools are developed for propagation of arbitrary electromagnetic fields, including for example stochastic fields exhibiting properties such as partial polarisation, through high numerical aperture optics. Finally these ideas are applied to the development, characterisation and optimisation of a number of topical optical systems: polarisation imaging; multiplexed optical data storage; and single molecule measurements. The work has implications for all optical imaging systems where polarisation of light is of concern.
Author | : A. Richard Thompson |
Publisher | : Wiley-Interscience |
Total Pages | : 568 |
Release | : 1986-04-28 |
Genre | : Nature |
ISBN | : |
A unified description of the theory and practice of radio interferometry and synthesis mapping techniques as they apply to astronomy and geology. Beginning with an historical review, it goes on to provide a detailed description of all aspects of radio inferometry, from basic principles through instrumental design to data reduction. Over 450 original papers and monographs are cited.
Author | : Valery V. Tuchin |
Publisher | : CRC Press |
Total Pages | : 682 |
Release | : 2022-02-04 |
Genre | : Science |
ISBN | : 1000466302 |
Biomedical photonics is currently one of the fastest growing fields, connecting research in physics, optics, and electrical engineering coupled with medical and biological applications. It allows for the structural and functional analysis of tissues and cells with resolution and contrast unattainable by any other methods. However, the major challenges of many biophotonics techniques are associated with the need to enhance imaging resolution even further to the sub-cellular level as well as translate them for in vivo studies. The tissue optical clearing method uses immersion of tissues into optical clearing agents (OCAs) that reduces the scattering of tissue and makes tissue more transparent and this method has been successfully used ever since. This book is a self-contained introduction to tissue optical clearing, including the basic principles and in vitro biological applications, from in vitro to in vivo tissue optical clearing methods, and combination of tissue optical clearing and various optical imaging for diagnosis. The chapters cover a wide range of issues related to the field of tissue optical clearing: mechanisms of tissue optical clearing in vitro and in vivo; traditional and innovative optical clearing agents; recent achievements in optical clearing of different tissues (including pathological tissues) and blood for optical imaging diagnosis and therapy. This book provides a comprehensive account of the latest research and possibilities of utilising optical clearing as an instrument for improving the diagnostic effectiveness of modern optical diagnostic methods. The book is addressed to biophysicist researchers, graduate students and postdocs of biomedical specialties, as well as biomedical engineers and physicians interested in the development and application of optical methods in medicine. Key features: The first collective reference to collate all known knowledge on this topic Edited by experts in the field with chapter contributions from subject area specialists Brings together the two main approaches in immersion optical clearing into one cohesive book
Author | : Iain H. Woodhouse |
Publisher | : CRC Press |
Total Pages | : 321 |
Release | : 2017-07-12 |
Genre | : Technology & Engineering |
ISBN | : 1351988557 |
Introduction to Microwave Remote Sensing offers an extensive overview of this versatile and extremely precise technology for technically oriented undergraduates and graduate students. This textbook emphasizes an important shift in conceptualization and directs it toward students with prior knowledge of optical remote sensing: the author dispels any linkage between microwave and optical remote sensing. Instead, he constructs the concept of microwave remote sensing by comparing it to the process of audio perception, explaining the workings of the ear as a metaphor for microwave instrumentation. This volume takes an “application-driven” approach. Instead of describing the technology and then its uses, this textbook justifies the need for measurement then explains how microwave technology addresses this need. Following a brief summary of the field and a history of the use of microwaves, the book explores the physical properties of microwaves and the polarimetric properties of electromagnetic waves. It examines the interaction of microwaves with matter, analyzes passive atmospheric and passive surface measurements, and describes the operation of altimeters and scatterometers. The textbook concludes by explaining how high resolution images are created using radars, and how techniques of interferometry can be applied to both passive and active sensors.
Author | : Jaap Tinbergen |
Publisher | : Cambridge University Press |
Total Pages | : 176 |
Release | : 2005-08-22 |
Genre | : Science |
ISBN | : 9780521018586 |
Radiation from astronomical objects generally shows some degree of polarization. Although this polarized radiation is usually only a small fraction of the total radiation, it often carries a wealth of information on the physical state and geometry of the emitting object and intervening material. Measurement of this polarized radiation is central to much modern astrophysical research. This handy volume provides a clear, comprehensive and concise introduction to astronomical polarimetry at all wavelengths. Starting from first principles and a simple physical picture of polarized radiation, the reader is introduced to all the key topics, including Stokes parameters, applications of polarimetry in astronomy, polarization algebra, polarization errors and calibration methods, and a selection of instruments (from radio to X-ray). The book is rounded off with a number of useful case studies, a collection of exercises, an extensive list of further reading and an informative index. This review of all aspects of astronomical polarization provides both an essential introduction for graduate students, and a valuable reference for practising astronomers.
Author | : Jean-René Roy |
Publisher | : Cambridge University Press |
Total Pages | : 311 |
Release | : 2018 |
Genre | : Nature |
ISBN | : 1108417019 |
A thought provoking study of the powerful impact of images in guiding astronomers' understanding of galaxies through time.
Author | : Chris D. Geddes |
Publisher | : Springer Science & Business Media |
Total Pages | : 460 |
Release | : 2007-12-29 |
Genre | : Science |
ISBN | : 0387330151 |
An essential reference for any laboratory working in the analytical fluorescence glucose sensing field. The increasing importance of these techniques is typified in one emerging area by developing non-invasive and continuous approaches for physiological glucose monitoring. This volume incorporates analytical fluorescence-based glucose sensing reviews, specialized enough to be attractive to professional researchers, yet appealing to a wider audience of scientists in related disciplines of fluorescence.
Author | : Mark A. Richards |
Publisher | : SciTech Publishing |
Total Pages | : 0 |
Release | : 2023-02-17 |
Genre | : Technology & Engineering |
ISBN | : 9781839533815 |
Principles of Modern Radar: Basic Principles is a comprehensive text for courses in radar systems and technology, a professional training textbook for formal in-house courses and for new hires; a reference for ongoing study following a radar short course and a self-study and professional reference book.
Author | : Lalit Kumar |
Publisher | : MDPI |
Total Pages | : 420 |
Release | : 2019-04-23 |
Genre | : Science |
ISBN | : 3038978841 |
In a rapidly changing world, there is an ever-increasing need to monitor the Earth’s resources and manage it sustainably for future generations. Earth observation from satellites is critical to provide information required for informed and timely decision making in this regard. Satellite-based earth observation has advanced rapidly over the last 50 years, and there is a plethora of satellite sensors imaging the Earth at finer spatial and spectral resolutions as well as high temporal resolutions. The amount of data available for any single location on the Earth is now at the petabyte-scale. An ever-increasing capacity and computing power is needed to handle such large datasets. The Google Earth Engine (GEE) is a cloud-based computing platform that was established by Google to support such data processing. This facility allows for the storage, processing and analysis of spatial data using centralized high-power computing resources, allowing scientists, researchers, hobbyists and anyone else interested in such fields to mine this data and understand the changes occurring on the Earth’s surface. This book presents research that applies the Google Earth Engine in mining, storing, retrieving and processing spatial data for a variety of applications that include vegetation monitoring, cropland mapping, ecosystem assessment, and gross primary productivity, among others. Datasets used range from coarse spatial resolution data, such as MODIS, to medium resolution datasets (Worldview -2), and the studies cover the entire globe at varying spatial and temporal scales.