Information Theory And Stochastics For Multiscale Nonlinear Systems
Download Information Theory And Stochastics For Multiscale Nonlinear Systems full books in PDF, epub, and Kindle. Read online free Information Theory And Stochastics For Multiscale Nonlinear Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Andrew Majda |
Publisher | : American Mathematical Soc. |
Total Pages | : 152 |
Release | : |
Genre | : Mathematics |
ISBN | : 9780821869864 |
This book introduces mathematicians to the fascinating mathematical interplay between ideas from stochastics and information theory and practical issues in studying complex multiscale nonlinear systems. It emphasizes the serendipity between modern applied mathematics and applications where rigorous analysis, the development of qualitative and/or asymptotic models, and numerical modeling all interact to explain complex phenomena. After a brief introduction to the emerging issues in multiscale modeling, the book has three main chapters. The first chapter is an introduction to information theory with novel applications to statistical mechanics, predictability, and Jupiter's Red Spot for geophysical flows. The second chapter discusses new mathematical issues regarding fluctuation-dissipation theorems for complex nonlinear systems including information flow, various approximations, and illustrates applications to various mathematical models. The third chapter discusses stochastic modeling of complex nonlinear systems. After a general discussion, a new elementary model, motivated by issues in climate dynamics, is utilized to develop a self-contained example of stochastic mode reduction. Based on A. Majda's Aisenstadt lectures at the University of Montreal, the book is appropriate for both pure and applied mathematics graduate students, postdocs and faculty, as well as interested researchers in other scientific disciplines. No background in geophysical flows is required. About the authors: Andrew Majda is a member of the National Academy of Sciences and has received numerous honors and awards, including the National Academy of Science Prize in Applied Mathematics, the John von Neumann Prize of the Society of Industrial and Applied Mathematics, the Gibbs Prize of the American Mathematical Society, and the Medal of the College de France. In the past several years at the Courant Institute, Majda and a multi-disciplinary faculty have created the Center for Atmosphere Ocean Science to promote cross-disciplinary research with modern applied mathematics in climate modeling and prediction. R.V. Abramov is a young researcher; he received his PhD in 2002. M. J. Grote received his Ph.D. under Joseph B. Keller at Stanford University in 1995.
Author | : Andrew Majda |
Publisher | : American Mathematical Soc. |
Total Pages | : 145 |
Release | : 2005 |
Genre | : Mathematics |
ISBN | : 0821838431 |
This book introduces mathematicians to the fascinating mathematical interplay between ideas from stochastics and information theory and practical issues in studying complex multiscale nonlinear systems. It emphasizes the serendipity between modern applied mathematics and applications where rigorous analysis, the development of qualitative and/or asymptotic models, and numerical modeling all interact to explain complex phenomena. After a brief introduction to the emerging issues in multiscale modeling, the book has three main chapters. The first chapter is an introduction to information theory with novel applications to statistical mechanics, predictability, and Jupiter's Red Spot for geophysical flows. The second chapter discusses new mathematical issues regarding fluctuation-dissipation theorems for complex nonlinear systems including information flow, various approximations, and illustrates applications to various mathematical models. The third chapter discusses stochastic modeling of complex nonlinear systems. After a general discussion, a new elementary model, motivated by issues in climate dynamics, is utilized to develop a self-contained example of stochastic mode reduction. Based on A. Majda's Aisenstadt lectures at the University of Montreal, the book is appropriate for both pure and applied mathematics graduate students, postdocs and faculty, as well as interested researchers in other scientific disciplines. No background in geophysical flows is required. About the authors: Andrew Majda is a member of the National Academy of Sciences and has received numerous honors and awards, including the National Academy of Science Prize in Applied Mathematics, the John von Neumann Prize of the Society of Industrial and Applied Mathematics, the Gibbs Prize of the American Mathematical Society, and the Medal of the College de France. In the past several years at the Courant Institute, Majda and a multi-disciplinary faculty have created the Center for Atmosphere Ocean Science to promote cross-disciplinary research with modern applied mathematics in climate modeling and prediction. R.V. Abramov is a young researcher; he received his PhD in 2002. M. J. Grote received his Ph.D. under Joseph B. Keller at Stanford University in 1995.
Author | : Andrew Majda |
Publisher | : |
Total Pages | : 133 |
Release | : 2005 |
Genre | : Information theory in mathematics |
ISBN | : 9781470438692 |
This book introduces mathematicians to the fascinating emerging mathematical interplay between ideas from stochastics and information theory and important practical issues in studying complex multiscale nonlinear systems. It emphasizes the serendipity between modern applied mathematics and applications where rigorous analysis, the development of qualitative and/or asymptotic models, and numerical modeling all interact to explain complex phenomena. After a brief introduction to the emerging issues in multiscale modeling, the book has three main chapters. The first chapter is an introduction to.
Author | : G A Pavliotis |
Publisher | : Springer Science & Business Media |
Total Pages | : 314 |
Release | : 2008-02-19 |
Genre | : Mathematics |
ISBN | : 0387738282 |
This introduction to multiscale methods gives you a broad overview of the methods’ many uses and applications. The book begins by setting the theoretical foundations of the methods and then moves on to develop models and prove theorems. Extensive use of examples shows how to apply multiscale methods to solving a variety of problems. Exercises then enable you to build your own skills and put them into practice. Extensions and generalizations of the results presented in the book, as well as references to the literature, are provided in the Discussion and Bibliography section at the end of each chapter.With the exception of Chapter One, all chapters are supplemented with exercises.
Author | : Stefan Heinz |
Publisher | : Springer |
Total Pages | : 198 |
Release | : 2015-05-06 |
Genre | : Mathematics |
ISBN | : 3319182064 |
Mathematical analyses and computational predictions of the behavior of complex systems are needed to effectively deal with weather and climate predictions, for example, and the optimal design of technical processes. Given the random nature of such systems and the recognized relevance of randomness, the equations used to describe such systems usually need to involve stochastics. The basic goal of this book is to introduce the mathematics and application of stochastic equations used for the modeling of complex systems. A first focus is on the introduction to different topics in mathematical analysis. A second focus is on the application of mathematical tools to the analysis of stochastic equations. A third focus is on the development and application of stochastic methods to simulate turbulent flows as seen in reality. This book is primarily oriented towards mathematics and engineering PhD students, young and experienced researchers, and professionals working in the area of stochastic differential equations and their applications. It contributes to a growing understanding of concepts and terminology used by mathematicians, engineers, and physicists in this relatively young and quickly expanding field.
Author | : Andrew J. Majda |
Publisher | : Springer |
Total Pages | : 97 |
Release | : 2016-09-14 |
Genre | : Mathematics |
ISBN | : 3319322176 |
This volume is a research expository article on the applied mathematics of turbulent dynamical systems through the paradigm of modern applied mathematics. It involves the blending of rigorous mathematical theory, qualitative and quantitative modeling, and novel numerical procedures driven by the goal of understanding physical phenomena which are of central importance to the field. The contents cover general framework, concrete examples, and instructive qualitative models. Accessible open problems are mentioned throughout. Topics covered include: · Geophysical flows with rotation, topography, deterministic and random forcing · New statistical energy principles for general turbulent dynamical systems, with applications · Linear statistical response theory combined with information theory to cope with model errors · Reduced low order models · Recent mathematical strategies for online data assimilation of turbulent dynamical systems as well as rigorous results for finite ensemble Kalman filters The volume will appeal to graduate students and researchers working mathematics, physics and engineering and particularly those in the climate, atmospheric and ocean sciences interested in turbulent dynamical as well as other complex systems.
Author | : Philippe G. Ciarlet |
Publisher | : Springer Science & Business Media |
Total Pages | : 431 |
Release | : 2013-11-29 |
Genre | : Mathematics |
ISBN | : 364241401X |
This book collects papers mainly presented at the "International Conference on Partial Differential Equations: Theory, Control and Approximation" (May 28 to June 1, 2012 in Shanghai) in honor of the scientific legacy of the exceptional mathematician Jacques-Louis Lions. The contributors are leading experts from all over the world, including members of the Academies of Sciences in France, the USA and China etc., and their papers cover key fields of research, e.g. partial differential equations, control theory and numerical analysis, that Jacques-Louis Lions created or contributed so much to establishing.
Author | : Sai Ravela |
Publisher | : Springer |
Total Pages | : 365 |
Release | : 2015-11-26 |
Genre | : Computers |
ISBN | : 3319251384 |
This book constitutes the refereed proceedings of the First International Conference on Dynamic Data-Driven Environmental Systems Science, DyDESS 2014, held in Cambridge, MA, USA, in November 2014.The 24 revised full papers and 7 short papers were carefully reviewed and selected from 62 submissions and cover topics on sensing, imaging and retrieval for the oceans, atmosphere, space, land, earth and planets that is informed by the environmental context; algorithms for modeling and simulation, downscaling, model reduction, data assimilation, uncertainty quantification and statistical learning; methodologies for planning and control, sampling and adaptive observation, and efficient coupling of these algorithms into information-gathering and observing system designs; and applications of methodology to environmental estimation, analysis and prediction including climate, natural hazards, oceans, cryosphere, atmosphere, land, space, earth and planets.
Author | : Shih-Yu (Simon) Wang |
Publisher | : BoD – Books on Demand |
Total Pages | : 402 |
Release | : 2012-03-09 |
Genre | : Science |
ISBN | : 9535100955 |
Climatology, the study of climate, is no longer regarded as a single discipline that treats climate as something that fluctuates only within the unchanging boundaries described by historical statistics. The field has recognized that climate is something that changes continually under the influence of physical and biological forces and so, cannot be understood in isolation but rather, is one that includes diverse scientific disciplines that play their role in understanding a highly complex coupled "whole system" that is the earth's climate. The modern era of climatology is echoed in this book. On the one hand it offers a broad synoptic perspective but also considers the regional standpoint, as it is this that affects what people need from climatology. Aspects on the topic of climate change - what is often considered a contradiction in terms - is also addressed. It is all too evident these days that what recent work in climatology has revealed carries profound implications for economic and social policy; it is with these in mind that the final chapters consider acumens as to the application of what has been learned to date.
Author | : Gui-Qiang Chen |
Publisher | : World Scientific |
Total Pages | : 401 |
Release | : 2009 |
Genre | : Mathematics |
ISBN | : 9814273279 |
This book is a collection of lecture notes on Nonlinear Conservation Laws, Fluid Systems and Related Topics delivered at 2007 Shanghai Mathematics Summer School held at Fudan University, China, by world's leading experts in the field. The volume comprises ªve chapters that cover a range of topics from mathematical theory and numerical approximation of both incompressible and compressible ªuid ªows, kinetic theory and conservation laws, to statistical theories for ªuid systems. Researchers and graduate students who want to work in this field will benefit from this essential reference as each chapter leads readers from the basics to the frontiers of the current research in these areas.