Influence of Subgrade Improvement and Non-uniformity on Pavement Performance

Influence of Subgrade Improvement and Non-uniformity on Pavement Performance
Author: Tyson David Rupnow
Publisher:
Total Pages: 548
Release: 2004
Genre:
ISBN:

This thesis contains results from three projects describing self-cementing fly ash stabilization of RAP-soil mixtures, stabilization of limestone screenings for use as a structural layer in road construction, and finite element modeling results of various subgrade materials including self-cementing fly ash stabilized subgrade, natural subgrade, granular subbase, and hydrated fly ash. The first project shows that self-cementing fly ash stabilization of RAP-soil mixtures is economically feasible and structurally capable of supporting construction traffic. The increase stiffness from the addition of self-cementing fly ash increases capacity ensuring long term pavement performance. Addition of self-cementing fly ash increases the consolidated shear strength about five times. The second project shows construction operations and field results proving that stabilization of limestone screenings is viable, cost effective, and produces an adequate structural layer for road construction. The measured moisture-density curves for manufactured sand and limestone screenings are about the same, and the moisture-strength curves show a dramatic decrease in strength beyond the optimum moisture content for strength. Durability testing concluded that CKD stabilized manufactured sand and limestone screenings are not viable construction alternatives, and the addition of class C fly ash with CKD significantly increased the durability of the mixtures. The third project concluded that a link exists between subgrade non-uniformity and pavement performance. Field testing, with the DCP, Clegg Impact Hammer, nuclear density gauge, and GeoGauge, and statistical analysis of subgrade materials concluded that granular subbase, self-cementing fly ash treated subgrade, and HFA decrease the variability of field results. Finite element modeling analysis proved that a link exists between subgrade non-uniformity and pavement performance. Uniform modeling conditions produced lower average deflections and stresses increasing pavement life. Statistical analysis concluded that modeling uniform subgrade conditions produce average stresses that have less variability than those for non-uniform modeling conditions. Pavement response reliability increased with the addition of uniform subgrade, proving that subgrade non-uniformity influences pavement performance.

Fly Ash Soil Stabilization for Non-uniform Subgrade Soils: Influence of subgrade non-uniformity on PCC pavement performance

Fly Ash Soil Stabilization for Non-uniform Subgrade Soils: Influence of subgrade non-uniformity on PCC pavement performance
Author:
Publisher:
Total Pages: 82
Release: 2005
Genre: Fly ash
ISBN:

Soil treated with self-cementing fly ash is increasingly being used in Iowa to stabilize pavement subgrades, but without a complete understanding of the short- and long-term behavior. To develop a broader understanding of fly ash engineering properties, mixtures of five different soil types, ranging from ML to CH, and several different fly ash sources (including hydrated and conditioned fly ashes) were evaluated.

Eleventh International Conference on the Bearing Capacity of Roads, Railways and Airfields

Eleventh International Conference on the Bearing Capacity of Roads, Railways and Airfields
Author: Inge Hoff
Publisher: CRC Press
Total Pages: 501
Release: 2021-11-10
Genre: Technology & Engineering
ISBN: 1000533336

Innovations in Road, Railway and Airfield Bearing Capacity – Volume 1 comprises the first part of contributions to the 11th International Conference on Bearing Capacity of Roads, Railways and Airfields (2022). In anticipation of the event, it unveils state-of-the-art information and research on the latest policies, traffic loading measurements, in-situ measurements and condition surveys, functional testing, deflection measurement evaluation, structural performance prediction for pavements and tracks, new construction and rehabilitation design systems, frost affected areas, drainage and environmental effects, reinforcement, traditional and recycled materials, full scale testing and on case histories of road, railways and airfields. This edited work is intended for a global audience of road, railway and airfield engineers, researchers and consultants, as well as building and maintenance companies looking to further upgrade their practices in the field.

Proposed Enhancements to Pavement ME Design: Improved Consideration of the Influence of Subgrade and Unbound Layers on Pavement Performance

Proposed Enhancements to Pavement ME Design: Improved Consideration of the Influence of Subgrade and Unbound Layers on Pavement Performance
Author:
Publisher:
Total Pages: 231
Release: 2019
Genre: Pavements
ISBN:

The performance of flexible and rigid pavements is known to be closely related to properties of the base, subbase, and/or subgrade. However, some recent research studies indicate that the performance predicted by this methodology shows a low sensitivity to the properties of underlying layers and does not always reflect the extent of the anticipated effect/ So the procedures contained in the American Association of Transportation Officials’ (AASHTO’s) design guidance need to be evaluated. NCHRP Web-Only Document 264: Proposed Enhancements to Pavement ME Design: Improved Consideration of the Influence of Subgrade and Unbound Layers on Pavement Performance proposes and develops enhancements to AASHTO's Pavement ME Design procedures for both flexible and rigid pavements, which will better reflect the influence of subgrade and unbound layers (properties and thicknesses) on the pavement performance.

Effects of Subsurface Drainage on Pavement Performance

Effects of Subsurface Drainage on Pavement Performance
Author: Kathleen Theresa Hall
Publisher: Transportation Research Board
Total Pages: 201
Release: 2007
Genre: Pavements
ISBN: 0309099021

NCHRP Report 583 explores the effects of subsurface drainage features on pavement performance through a program of inspection and testing of the subsurface drainage features present in the Long-Term Pavement Performance SPS-1 (flexible hot-mix asphalt pavement) and SPS-2 (rigid portland cement concrete pavement) field sections.

Final Report

Final Report
Author: United States. Army. Corps of Engineers. Ohio River Division Laboratories
Publisher:
Total Pages: 272
Release: 1950
Genre: Pavements, Concrete
ISBN:

Structural Behavior of Asphalt Pavements

Structural Behavior of Asphalt Pavements
Author: Lijun Sun
Publisher: Butterworth-Heinemann
Total Pages: 1072
Release: 2016-08-09
Genre: Technology & Engineering
ISBN: 0128028939

Structural Behavior of Asphalt Pavements provides engineers and researchers with a detailed guide to the structural behavioral dynamics of asphalt pavement including: pavement temperature distribution, mechanistic response of pavement structure under the application of heavy vehicles, distress mechanism of pavement, and pavement deterioration performance and dynamic equations. An authoritative guide for understanding the key mechanisms for creating longer lasting pavements, Structural Behavior of Asphalt Pavements describes the intrinsic consistency between macroscopic performance and microscopic response, structure and material, as well as global and local performances, and demonstrates the process of pavement analyses and designs, approaching science from empirical analyses. Analyzes the external and internal factors influencing pavement temperature field, and provide a review of existing pavement temperature prediction models Introduces a “Bridge Principle through which pavement performance and fatigue properties are consolidated Defines the intrinsic consistency between macroscopic performance and microscopic response, structure and material, as well as global and local performance Summaries the mechanistic response of pavement structure under the application of heavy vehicle, distress mechanism of pavement, pavement deterioration performance and dynamic equations, and life cycle analysis of pavement