Representation and Inference for Natural Language

Representation and Inference for Natural Language
Author: Patrick Blackburn
Publisher: Center for the Study of Language and Information Publica Tion
Total Pages: 0
Release: 2005
Genre: Computational linguistics
ISBN: 9781575864969

How can computers distinguish the coherent from the unintelligible, recognize new information in a sentence, or draw inferences from a natural language passage? Computational semantics is an exciting new field that seeks answers to these questions, and this volume is the first textbook wholly devoted to this growing subdiscipline. The book explains the underlying theoretical issues and fundamental techniques for computing semantic representations for fragments of natural language. This volume will be an essential text for computer scientists, linguists, and anyone interested in the development of computational semantics.

Diagrammatic Representation and Inference

Diagrammatic Representation and Inference
Author: Amrita Basu
Publisher: Springer Nature
Total Pages: 570
Release: 2021-09-21
Genre: Computers
ISBN: 3030860620

This book constitutes the refereed proceedings of the 12th International Conference on the Theory and Application of Diagrams, Diagrams 2021, held virtually in September 2021. The 16 full papers and 25 short papers presented together with 16 posters were carefully reviewed and selected from 94 submissions. The papers are organized in the following topical sections: design of concrete diagrams; theory of diagrams; diagrams and mathematics; diagrams and logic; new representation systems; analysis of diagrams; diagrams and computation; cognitive analysis; diagrams as structural tools; formal diagrams; and understanding thought processes. 10 chapters are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Diagrammatic Representation and Inference

Diagrammatic Representation and Inference
Author: Ahti-Veikko Pietarinen
Publisher: Springer Nature
Total Pages: 557
Release: 2020-08-17
Genre: Computers
ISBN: 3030542491

This book constitutes the refereed proceedings of the 11th International Conference on the Theory and Application of Diagrams, Diagrams 2020, held in Tallinn, Estonia, in August 2020.* The 20 full papers and 16 short papers presented together with 18 posters were carefully reviewed and selected from 82 submissions. The papers are organized in the following topical sections: diagrams in mathematics; diagram design, principles, and classification; reasoning with diagrams; Euler and Venn diagrams; empirical studies and cognition; logic and diagrams; and posters. *The conference was held virtually due to the COVID-19 pandemic. The chapters ‘Modality and Uncertainty in Data Visualization: A Corpus Approach to the Use of Connecting Lines,’ ‘On Effects of Changing Multi-Attribute Table Design on Decision Making: An Eye Tracking Study,’ ‘Truth Graph: A Novel Method for Minimizing Boolean Algebra Expressions by Using Graphs,’ ‘The DNA Framework of Visualization’ and ‘Visualizing Curricula’ are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Pattern Theory

Pattern Theory
Author: Ulf Grenander
Publisher: Oxford University Press
Total Pages: 633
Release: 2007
Genre: Computers
ISBN: 0198505701

Pattern Theory provides a comprehensive and accessible overview of the modern challenges in signal, data, and pattern analysis in speech recognition, computational linguistics, image analysis and computer vision. Aimed at graduate students in biomedical engineering, mathematics, computer science, and electrical engineering with a good background in mathematics and probability, the text includes numerous exercises and an extensive bibliography. Additional resources including extended proofs, selected solutions and examples are available on a companion website. The book commences with a short overview of pattern theory and the basics of statistics and estimation theory. Chapters 3-6 discuss the role of representation of patterns via condition structure. Chapters 7 and 8 examine the second central component of pattern theory: groups of geometric transformation applied to the representation of geometric objects. Chapter 9 moves into probabilistic structures in the continuum, studying random processes and random fields indexed over subsets of Rn. Chapters 10 and 11 continue with transformations and patterns indexed over the continuum. Chapters 12-14 extend from the pure representations of shapes to the Bayes estimation of shapes and their parametric representation. Chapters 15 and 16 study the estimation of infinite dimensional shape in the newly emergent field of Computational Anatomy. Finally, Chapters 17 and 18 look at inference, exploring random sampling approaches for estimation of model order and parametric representing of shapes.

Graphical Models, Exponential Families, and Variational Inference

Graphical Models, Exponential Families, and Variational Inference
Author: Martin J. Wainwright
Publisher: Now Publishers Inc
Total Pages: 324
Release: 2008
Genre: Computers
ISBN: 1601981848

The core of this paper is a general set of variational principles for the problems of computing marginal probabilities and modes, applicable to multivariate statistical models in the exponential family.

Diagrammatic Representation and Inference

Diagrammatic Representation and Inference
Author: Alan Blackwell
Publisher: Springer Science & Business Media
Total Pages: 469
Release: 2004-03-12
Genre: Art
ISBN: 354021268X

This book constitutes the refereed proceedings of the Third International Conference, Diagrams 2004, held in Cambridge, UK, in March 2004. The 18 revised full papers and 42 revised poster papers presented together with a survey article and the abstracts of 2 posters were carefully reviewed and selected from a total of 91 submissions. The papers are organized in topical sections on fundamental issues, logical aspects of diagrammatic representation and reasoning, computational aspects of diagrammatic representation and reasoning, cognitive aspects of diagrammatic representation and reasoning, visualizing information with diagrams, diagrams in human-computer interaction, and diagrams in software engineering.

An Introduction to Causal Inference

An Introduction to Causal Inference
Author: Judea Pearl
Publisher: Createspace Independent Publishing Platform
Total Pages: 0
Release: 2015
Genre: Causation
ISBN: 9781507894293

This paper summarizes recent advances in causal inference and underscores the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called "causal effects" or "policy evaluation") (2) queries about probabilities of counterfactuals, (including assessment of "regret," "attribution" or "causes of effects") and (3) queries about direct and indirect effects (also known as "mediation"). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both. The tools are demonstrated in the analyses of mediation, causes of effects, and probabilities of causation. -- p. 1.

Probabilistic Reasoning in Intelligent Systems

Probabilistic Reasoning in Intelligent Systems
Author: Judea Pearl
Publisher: Elsevier
Total Pages: 573
Release: 2014-06-28
Genre: Computers
ISBN: 0080514898

Probabilistic Reasoning in Intelligent Systems is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic. The author distinguishes syntactic and semantic approaches to uncertainty--and offers techniques, based on belief networks, that provide a mechanism for making semantics-based systems operational. Specifically, network-propagation techniques serve as a mechanism for combining the theoretical coherence of probability theory with modern demands of reasoning-systems technology: modular declarative inputs, conceptually meaningful inferences, and parallel distributed computation. Application areas include diagnosis, forecasting, image interpretation, multi-sensor fusion, decision support systems, plan recognition, planning, speech recognition--in short, almost every task requiring that conclusions be drawn from uncertain clues and incomplete information. Probabilistic Reasoning in Intelligent Systems will be of special interest to scholars and researchers in AI, decision theory, statistics, logic, philosophy, cognitive psychology, and the management sciences. Professionals in the areas of knowledge-based systems, operations research, engineering, and statistics will find theoretical and computational tools of immediate practical use. The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.

Probabilistic Graphical Models

Probabilistic Graphical Models
Author: Daphne Koller
Publisher: MIT Press
Total Pages: 1270
Release: 2009-07-31
Genre: Computers
ISBN: 0262258358

A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions. Most tasks require a person or an automated system to reason—to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality. Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.

Information Theory, Inference and Learning Algorithms

Information Theory, Inference and Learning Algorithms
Author: David J. C. MacKay
Publisher: Cambridge University Press
Total Pages: 694
Release: 2003-09-25
Genre: Computers
ISBN: 9780521642989

Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.