Induction And Analogy In Mathematics
Download Induction And Analogy In Mathematics full books in PDF, epub, and Kindle. Read online free Induction And Analogy In Mathematics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : George Polya |
Publisher | : |
Total Pages | : 498 |
Release | : 2014-01 |
Genre | : Mathematics |
ISBN | : 9781614275572 |
2014 Reprint of 1954 American Edition. Full facsimile of the original edition, not reproduced with Optical Recognition Software. This two volume classic comprises two titles: "Patterns of Plausible Inference" and "Induction and Analogy in Mathematics." This is a guide to the practical art of plausible reasoning, particularly in mathematics, but also in every field of human activity. Using mathematics as the example par excellence, Polya shows how even the most rigorous deductive discipline is heavily dependent on techniques of guessing, inductive reasoning, and reasoning by analogy. In solving a problem, the answer must be guessed at before a proof can be given, and guesses are usually made from a knowledge of facts, experience, and hunches. The truly creative mathematician must be a good guesser first and a good prover afterward; many important theorems have been guessed but no proved until much later. In the same way, solutions to problems can be guessed, and a god guesser is much more likely to find a correct solution. This work might have been called "How to Become a Good Guesser."-From the Dust Jacket.
Author | : George Pólya |
Publisher | : |
Total Pages | : 200 |
Release | : 1954 |
Genre | : Mathematics |
ISBN | : 9780691080062 |
A guide to the practical art of plausible reasoning, this book has relevance in every field of intellectual activity. Professor Polya, a world-famous mathematician from Stanford University, uses mathematics to show how hunches and guesses play an important part in even the most rigorously deductive science. He explains how solutions to problems can be guessed at; good guessing is often more important than rigorous deduction in finding correct solutions. Vol. II, on Patterns of Plausible Inference, attempts to develop a logic of plausibility. What makes some evidence stronger and some weaker? How does one seek evidence that will make a suspected truth more probable? These questions involve philosophy and psychology as well as mathematics.
Author | : S. M. Ulam |
Publisher | : Univ of California Press |
Total Pages | : 588 |
Release | : 2023-11-15 |
Genre | : Science |
ISBN | : 0520322924 |
During his forty-year association with the Los Alamos National Laboratory, mathematician Stanislaw Ulam wrote many Laboratory Reports, usually in collaboration with colleagues. Some of them remain classified to this day. The rest are gathered in this volume and for the first time are easily accesible to mathematicians, physical scientists, and historians. The timeliness of these papers is remarkable. They contain seminal ideas in such fields as nonlinear stochastic processes, parallel computation, cellular automata, and mathematical biology. The collection is of historical interest as well, During and after World War II, the complexity of problems at the frontiers of science surpassed any technology that had ever existed. Electronic computing machines had to be developed and new computing methods had to be invented based on the most abstract ideas from the foundations of mathematics and theoretical physics. To these problems and others in physics, astronomy, and biology, Ulam was able to bring both general insights and specific conceptual contributions. His fertile ideas were far ahead of their time, and ranged over many branches of science. In fact, his mathematical versatility fulfilled the statement of his friend and mentor, the great Polish mathematician Stefan Banach, who claimed that the very best mathematicians see "analogies between analogies." Introduced by A. R. Bednarek and Francoise Ulam, these Los Alamos reports represent a unique view of one of the twentieth century's intellectual masters and scientific pioneers. This title is part of UC Press's Voices Revived program, which commemorates University of California Press’s mission to seek out and cultivate the brightest minds and give them voice, reach, and impact. Drawing on a backlist dating to 1893, Voices Revived makes high-quality, peer-reviewed scholarship accessible once again using print-on-demand technology. This title was originally published in 1990.
Author | : G. Polya |
Publisher | : Princeton University Press |
Total Pages | : 300 |
Release | : 1990-08-23 |
Genre | : Mathematics |
ISBN | : 9780691025094 |
"Here the author of How to Solve It explains how to become a "good guesser." Marked by G. Polya's simple, energetic prose and use of clever examples from a wide range of human activities, this two-volume work explores techniques of guessing, inductive reasoning, and reasoning by analogy, and the role they play in the most rigorous of deductive disciplines."--Book cover.
Author | : Andrew Aberdein |
Publisher | : Springer Science & Business Media |
Total Pages | : 392 |
Release | : 2013-07-01 |
Genre | : Philosophy |
ISBN | : 9400765347 |
Written by experts in the field, this volume presents a comprehensive investigation into the relationship between argumentation theory and the philosophy of mathematical practice. Argumentation theory studies reasoning and argument, and especially those aspects not addressed, or not addressed well, by formal deduction. The philosophy of mathematical practice diverges from mainstream philosophy of mathematics in the emphasis it places on what the majority of working mathematicians actually do, rather than on mathematical foundations. The book begins by first challenging the assumption that there is no role for informal logic in mathematics. Next, it details the usefulness of argumentation theory in the understanding of mathematical practice, offering an impressively diverse set of examples, covering the history of mathematics, mathematics education and, perhaps surprisingly, formal proof verification. From there, the book demonstrates that mathematics also offers a valuable testbed for argumentation theory. Coverage concludes by defending attention to mathematical argumentation as the basis for new perspectives on the philosophy of mathematics.
Author | : Sanjoy Mahajan |
Publisher | : MIT Press |
Total Pages | : 152 |
Release | : 2010-03-05 |
Genre | : Education |
ISBN | : 0262265591 |
An antidote to mathematical rigor mortis, teaching how to guess answers without needing a proof or an exact calculation. In problem solving, as in street fighting, rules are for fools: do whatever works—don't just stand there! Yet we often fear an unjustified leap even though it may land us on a correct result. Traditional mathematics teaching is largely about solving exactly stated problems exactly, yet life often hands us partly defined problems needing only moderately accurate solutions. This engaging book is an antidote to the rigor mortis brought on by too much mathematical rigor, teaching us how to guess answers without needing a proof or an exact calculation. In Street-Fighting Mathematics, Sanjoy Mahajan builds, sharpens, and demonstrates tools for educated guessing and down-and-dirty, opportunistic problem solving across diverse fields of knowledge—from mathematics to management. Mahajan describes six tools: dimensional analysis, easy cases, lumping, picture proofs, successive approximation, and reasoning by analogy. Illustrating each tool with numerous examples, he carefully separates the tool—the general principle—from the particular application so that the reader can most easily grasp the tool itself to use on problems of particular interest. Street-Fighting Mathematics grew out of a short course taught by the author at MIT for students ranging from first-year undergraduates to graduate students ready for careers in physics, mathematics, management, electrical engineering, computer science, and biology. They benefited from an approach that avoided rigor and taught them how to use mathematics to solve real problems. Street-Fighting Mathematics will appear in print and online under a Creative Commons Noncommercial Share Alike license.
Author | : Brendan Fong |
Publisher | : Cambridge University Press |
Total Pages | : 351 |
Release | : 2019-07-18 |
Genre | : Mathematics |
ISBN | : 1108582249 |
Category theory is unmatched in its ability to organize and layer abstractions and to find commonalities between structures of all sorts. No longer the exclusive preserve of pure mathematicians, it is now proving itself to be a powerful tool in science, informatics, and industry. By facilitating communication between communities and building rigorous bridges between disparate worlds, applied category theory has the potential to be a major organizing force. This book offers a self-contained tour of applied category theory. Each chapter follows a single thread motivated by a real-world application and discussed with category-theoretic tools. We see data migration as an adjoint functor, electrical circuits in terms of monoidal categories and operads, and collaborative design via enriched profunctors. All the relevant category theory, from simple to sophisticated, is introduced in an accessible way with many examples and exercises, making this an ideal guide even for those without experience of university-level mathematics.
Author | : Ken Levasseur |
Publisher | : Lulu.com |
Total Pages | : 574 |
Release | : 2012-02-25 |
Genre | : Computers |
ISBN | : 1105559297 |
''In writing this book, care was taken to use language and examples that gradually wean students from a simpleminded mechanical approach and move them toward mathematical maturity. We also recognize that many students who hesitate to ask for help from an instructor need a readable text, and we have tried to anticipate the questions that go unasked. The wide range of examples in the text are meant to augment the "favorite examples" that most instructors have for teaching the topcs in discrete mathematics. To provide diagnostic help and encouragement, we have included solutions and/or hints to the odd-numbered exercises. These solutions include detailed answers whenever warranted and complete proofs, not just terse outlines of proofs. Our use of standard terminology and notation makes Applied Discrete Structures a valuable reference book for future courses. Although many advanced books have a short review of elementary topics, they cannot be complete. The text is divided into lecture-length sections, facilitating the organization of an instructor's presentation.Topics are presented in such a way that students' understanding can be monitored through thought-provoking exercises. The exercises require an understanding of the topics and how they are interrelated, not just a familiarity with the key words. An Instructor's Guide is available to any instructor who uses the text. It includes: Chapter-by-chapter comments on subtopics that emphasize the pitfalls to avoid; Suggested coverage times; Detailed solutions to most even-numbered exercises; Sample quizzes, exams, and final exams. This textbook has been used in classes at Casper College (WY), Grinnell College (IA), Luzurne Community College (PA), University of the Puget Sound (WA).''--
Author | : David Corfield |
Publisher | : Cambridge University Press |
Total Pages | : 300 |
Release | : 2003-04-24 |
Genre | : Philosophy |
ISBN | : 1139436392 |
In this ambitious study, David Corfield attacks the widely held view that it is the nature of mathematical knowledge which has shaped the way in which mathematics is treated philosophically and claims that contingent factors have brought us to the present thematically limited discipline. Illustrating his discussion with a wealth of examples, he sets out a variety of approaches to new thinking about the philosophy of mathematics, ranging from an exploration of whether computers producing mathematical proofs or conjectures are doing real mathematics, to the use of analogy, the prospects for a Bayesian confirmation theory, the notion of a mathematical research programme and the ways in which new concepts are justified. His inspiring book challenges both philosophers and mathematicians to develop the broadest and richest philosophical resources for work in their disciplines and points clearly to the ways in which this can be done.
Author | : G. Polya |
Publisher | : Princeton University Press |
Total Pages | : 300 |
Release | : 2020-09-01 |
Genre | : Mathematics |
ISBN | : 0691218307 |
A guide to the practical art of plausible reasoning, this book has relevance in every field of intellectual activity. Professor Polya, a world-famous mathematician from Stanford University, uses mathematics to show how hunches and guesses play an important part in even the most rigorously deductive science. He explains how solutions to problems can be guessed at; good guessing is often more important than rigorous deduction in finding correct solutions. Vol. I, on Induction and Analogy in Mathematics, covers a wide variety of mathematical problems, revealing the trains of thought that lead to solutions, pointing out false bypaths, discussing techniques of searching for proofs. Problems and examples challenge curiosity, judgment, and power of invention.