Artificial Cilia

Artificial Cilia
Author: Jaap MJ den Toonder
Publisher: Royal Society of Chemistry
Total Pages: 279
Release: 2013-05-31
Genre: Technology & Engineering
ISBN: 1849737096

Cilia are tiny hairs covering biological cells to generate and sense fluid flow. Millions of years of evolution have inspired a novel technology which is barely a decade old. Artificial cilia have been developed to control and sense fluid flow in microscopic systems, presenting new and interesting options for flow control in lab-on-a-chip devices. This appealing link between nature and technology has seen rapid development in the last few years, and this book presents a review of the state-of-the-art in the form of a professional reference book. The editors have pioneered the field, having initiated a major European project on this topic soon after its inception. Active researchers in academia and industry will benefit from the comprehensive nature of this book, while postgraduates and those new to the field will gain a clear understanding of the theory, techniques and applications of artificial cilia.

Mixing

Mixing
Author: H. Chaté
Publisher: Springer Science & Business Media
Total Pages: 395
Release: 2012-12-06
Genre: Science
ISBN: 1461546974

Mixing may be thought of as the operation by which a system evolves from one state of simplicity (initial segregation) to another state of simplicity (complete uniformity). Between these two extremes, complex patterns emerge and die. Questions naturally arise- how can the geometry of complex patterns be characterised, what is the time scale of the process, what structures are involved in the flow? This volume, comprising the proceedings of the NATO ASI on Mixing, attempts to address these questions from the approaches of geometry, kinetics and structure. The ASI which brought together diverse communities with a common interest in the problem of mixing, now provides us with a comprehensive work on the problem of mixing.

Mems for Biomedical Applications

Mems for Biomedical Applications
Author: Shekhar Bhansali
Publisher: Elsevier
Total Pages: 511
Release: 2012-07-18
Genre: Technology & Engineering
ISBN: 0857096273

The application of Micro Electro Mechanical Systems (MEMS) in the biomedical field is leading to a new generation of medical devices. MEMS for biomedical applications reviews the wealth of recent research on fabrication technologies and applications of this exciting technology.The book is divided into four parts: Part one introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms. Part two describes applications of MEMS for biomedical sensing and diagnostic applications. MEMS for in vivo sensing and electrical impedance spectroscopy are investigated, along with ultrasonic transducers, and lab-on-chip devices. MEMS for tissue engineering and clinical applications are the focus of part three, which considers cell culture and tissue scaffolding devices, BioMEMS for drug delivery and minimally invasive medical procedures. Finally, part four reviews emerging biomedical applications of MEMS, from implantable neuroprobes and ocular implants to cellular microinjection and hybrid MEMS.With its distinguished editors and international team of expert contributors, MEMS for biomedical applications provides an authoritative review for scientists and manufacturers involved in the design and development of medical devices as well as clinicians using this important technology. - Reviews the wealth of recent research on fabrication technologies and applications of Micro Electro Mechanical Systems (MEMS) in the biomedical field - Introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms - Considers MEMS for biomedical sensing and diagnostic applications, along with MEMS for in vivo sensing and electrical impedance spectroscopy

Emerging Technologies for Nanoparticle Manufacturing

Emerging Technologies for Nanoparticle Manufacturing
Author: Jayvadan K. Patel
Publisher: Springer Nature
Total Pages: 611
Release: 2021-06-23
Genre: Medical
ISBN: 3030507033

This book provides an overview of nanoparticle production methods, scale-up issues drawing attention to industrial applicability, and addresses their successful applications for commercial use. There is a need for a reference book which will address various aspects of recent progress in the methods of development of nanoparticles with a focus on polymeric and lipid nanoparticles, their scale-up techniques, and challenges in their commercialization. There is no consolidated reference book that discusses the emerging technologies for nanoparticle manufacturing. This book focuses on the following major aspects of emerging technologies for nano particle manufacturing. I. Introduction and Biomedical Applications of Nanoparticles II. Polymeric Nanoparticles III. Lipid Nanoparticles IV. Metallic Nanoparticles V. Quality Control for Nanoparticles VI. Challenges in Scale-Up Production of Nanoparticles VII. Injectable Nanosystems VIII. Future Directions and Challenges Leading scientists are selected as chapter authors who have contributed significantly in this field and they focus more on emerging technologies for nanoparticle manufacturing, future directions, and challenges.

Microbiorobotics

Microbiorobotics
Author: Minjun Kim
Publisher: William Andrew
Total Pages: 329
Release: 2012-03-08
Genre: Science
ISBN: 145577894X

Microbiorobotics is a new engineering discipline that inherently involves a multidisciplinary approach (mechanical engineering, cellular biology, mathematical modeling, control systems, synthetic biology, etc). Building robotics system in the micro scale is an engineering task that has resulted in many important applications, ranging from micromanufacturing techniques to cellular manipulation. However, it is also a very challenging engineering task. One of the reasons is because many engineering ideas and principles that are used in larger scales do not scale well to the micro-scale. For example, locomotion principles in a fluid do not function in the same way, and the use of rotational motors is impractical because of the difficulty of building of the required components. Microrobotics is an area that is acknowledged to have massive potential in applications from medicine to manufacturing. This book introduces an inter-disciplinary readership to the toolkit that micro-organisms offer to micro-engineering The design of robots, sensors and actuators faces a range of techology challenges at the micro-scale. This book shows how biological techniques and materials can be used to meet these challenges World-class multi-disciplanry editors and contributors leverage insights from engineering, mathematical modeling and the life sciences – creating a novel toolkit for microrobotics

Spinal Cord Injury (SCI) Repair Strategies

Spinal Cord Injury (SCI) Repair Strategies
Author: Giuseppe Perale
Publisher: Woodhead Publishing
Total Pages: 348
Release: 2019-10-30
Genre: Technology & Engineering
ISBN: 0081028083

Spinal Cord Injury (SCI) Repair Strategies provides researchers the latest information on potential regenerative approaches to spinal cord injury, specifically focusing on therapeutic approaches that target regeneration, including cell therapies, controlled drug delivery systems, and biomaterials. Dr. Giuseppe Perale and Dr. Filippo Rossi lead a team of authoritative authors in academia and industry in this innovative reference on the field of regenerative medicine and tissue engineering. This book presents all the information readers need to understand the current and potential array of techniques, materials, applications and their benefits for spinal cord repair. - Covers current and future repair strategies for spinal cord injury repair - Focuses on key research trends, clinics, biology and engineering - Provides fundamentals on regenerative engineering and tissue engineering

Mathematical Modeling of Swimming Soft Microrobots

Mathematical Modeling of Swimming Soft Microrobots
Author: Islam S.M. Khalil
Publisher: Academic Press
Total Pages: 242
Release: 2021-06-22
Genre: Technology & Engineering
ISBN: 0128169443

Mathematical Modelling of Swimming Soft Microrobots presents a theoretical framework for modelling of soft microrobotic systems based on resistive-force theory. Microorganisms are highly efficient at swimming regardless of the rheological and physical properties of the background fluids. This efficiency has inspired researchers and Engineers to develop microrobots that resemble the morphology and swimming strategies of microorganisms. The ultimate goal of this book is threefold: first, to relate resistive-force theory to externally and internally actuated microrobotic systems; second, to enable the readers to develop numerical models of a wide range of microrobotic systems; third, to enable the reader to optimize the design of the microrobot to enhance its swimming efficiency. - Enable the readers to develop numerical models of a wide range of microrobotic systems - Enable the reader to optimize the design of the microrobot to enhance its swimming efficiency - The focus on the development of numerical models that enables Engineers to predict the behavior of the microrobots and optimize their designs to increase their swimming efficiency - Provides videos to demonstrate experimental results and animations from the simulation results

Field-Driven Micro and Nanorobots for Biology and Medicine

Field-Driven Micro and Nanorobots for Biology and Medicine
Author: Yu Sun
Publisher: Springer Nature
Total Pages: 422
Release: 2021-11-25
Genre: Technology & Engineering
ISBN: 3030801977

This book describes the substantial progress recently made in the development of micro and nanorobotic systems, utilizing magnetic, optical, acoustic, electrical, and other actuation fields. It covers several areas of micro and nanorobotics including robotics, materials science, and biomedical engineering. Field-Driven Micro and Nanorobots for Biology and Medicine provides readers with fundamental physics at the micro and nano scales, state-of-the-art technical advances in field-driven micro and nanorobots, and applications in biological and biomedical disciplines.

Lab-on-a-Chip Devices and Micro-Total Analysis Systems

Lab-on-a-Chip Devices and Micro-Total Analysis Systems
Author: Jaime Castillo-León
Publisher: Springer
Total Pages: 246
Release: 2014-11-05
Genre: Technology & Engineering
ISBN: 3319086871

This book covers all the steps in order to fabricate a lab-on-a-chip device starting from the idea, the design, simulation, fabrication and final evaluation. Additionally, it includes basic theory on microfluidics essential to understand how fluids behave at such reduced scale. Examples of successful histories of lab-on-a-chip systems that made an impact in fields like biomedicine and life sciences are also provided. This book also: · Provides readers with a unique approach and toolset for lab-on-a-chip development in terms of materials, fabrication techniques, and components · Discusses novel materials and techniques, such as paper-based devices and synthesis of chemical compounds on-chip · Covers the four key aspects of development: basic theory, design, fabrication, and testing · Provides readers with a comprehensive list of the most important journals, blogs, forums, and conferences where microfluidics and lab-on-a-chip news, methods, techniques and challenges are presented and discussed, as well as a list of companies providing design and simulation support, components, and/or developing lab-on-a-chip and microfluidic devices.

Integrated Nano-Biomechanics

Integrated Nano-Biomechanics
Author: Takami Yamaguchi
Publisher: William Andrew
Total Pages: 316
Release: 2018-06-27
Genre: Medical
ISBN: 0323389597

Integrated Nano-Biomechanics provides an integrated look into the rapidly evolving field of nanobiomechanics. The book demystifies the processes in living organisms at the micro- and nano-scale through mechanics, using theoretical, computational and experimental means. The book develops the concept of integrating different technologies along the hierarchical structure of biological systems and clarifies biomechanical interactions among different levels for the analysis of multi-scale pathophysiological phenomena. With a focus on nano-scale processes and biomedical applications, it is shown how knowledge obtained can be utilized in a range of areas, including diagnosis and treatment of various human diseases and alternative energy production. This book is based on collaboration of researchers from a unique combination of fields, including biomechanics, computational mechanics, GPU application, electron microscopy, biology of motile micro-organisms, entomological mechanics and clinical medicine. The book will be of great interest to scientists and researchers involved in disciplines, such as micro- and nano-engineering, bionanotechnology, biomedical engineering, micro- and nano-scale fluid-mechanics (such as in MEMS devices), nanomedicine and microbiology, as well as industries such as optical devices, computer simulation, plant based energy sources and clinical diagnosis of the gastric diseases. - Provides knowledge of integrated biomechanics, focusing on nano-scale, in this rapidly growing research field - Explains how the different technologies can be integrated and applied in a variety of biomedical application fields, as well as for alternative energy sources - Uses a collaborative, multidisciplinary approach to provide a comprehensive coverage of nano-biomechanics