In-/Near-Memory Computing

In-/Near-Memory Computing
Author: Daichi Fujiki
Publisher: Springer Nature
Total Pages: 124
Release: 2022-05-31
Genre: Technology & Engineering
ISBN: 3031017722

This book provides a structured introduction of the key concepts and techniques that enable in-/near-memory computing. For decades, processing-in-memory or near-memory computing has been attracting growing interest due to its potential to break the memory wall. Near-memory computing moves compute logic near the memory, and thereby reduces data movement. Recent work has also shown that certain memories can morph themselves into compute units by exploiting the physical properties of the memory cells, enabling in-situ computing in the memory array. While in- and near-memory computing can circumvent overheads related to data movement, it comes at the cost of restricted flexibility of data representation and computation, design challenges of compute capable memories, and difficulty in system and software integration. Therefore, wide deployment of in-/near-memory computing cannot be accomplished without techniques that enable efficient mapping of data-intensive applications to such devices, without sacrificing accuracy or increasing hardware costs excessively. This book describes various memory substrates amenable to in- and near-memory computing, architectural approaches for designing efficient and reliable computing devices, and opportunities for in-/near-memory acceleration of different classes of applications.

Neuromorphic Computing and Beyond

Neuromorphic Computing and Beyond
Author: Khaled Salah Mohamed
Publisher: Springer Nature
Total Pages: 241
Release: 2020-01-25
Genre: Technology & Engineering
ISBN: 3030372243

This book discusses and compares several new trends that can be used to overcome Moore’s law limitations, including Neuromorphic, Approximate, Parallel, In Memory, and Quantum Computing. The author shows how these paradigms are used to enhance computing capability as developers face the practical and physical limitations of scaling, while the demand for computing power keeps increasing. The discussion includes a state-of-the-art overview and the essential details of each of these paradigms.

Applied Reconfigurable Computing. Architectures, Tools, and Applications

Applied Reconfigurable Computing. Architectures, Tools, and Applications
Author: Steven Derrien
Publisher: Springer Nature
Total Pages: 338
Release: 2021-06-23
Genre: Computers
ISBN: 3030790258

This book constitutes the proceedings of the 17th International Symposium on Applied Reconfigurable Computing, ARC 2021, held as a virtual event, in June 2021. The 14 full papers and 11 short presentations presented in this volume were carefully reviewed and selected from 40 submissions. The papers cover a broad spectrum of applications of reconfigurable computing, from driving assistance, data and graph processing acceleration, computer security to the societal relevant topic of supporting early diagnosis of Covid infectious conditions.

Artificial Intelligence Hardware Design

Artificial Intelligence Hardware Design
Author: Albert Chun-Chen Liu
Publisher: John Wiley & Sons
Total Pages: 244
Release: 2021-08-23
Genre: Computers
ISBN: 1119810477

ARTIFICIAL INTELLIGENCE HARDWARE DESIGN Learn foundational and advanced topics in Neural Processing Unit design with real-world examples from leading voices in the field In Artificial Intelligence Hardware Design: Challenges and Solutions, distinguished researchers and authors Drs. Albert Chun Chen Liu and Oscar Ming Kin Law deliver a rigorous and practical treatment of the design applications of specific circuits and systems for accelerating neural network processing. Beginning with a discussion and explanation of neural networks and their developmental history, the book goes on to describe parallel architectures, streaming graphs for massive parallel computation, and convolution optimization. The authors offer readers an illustration of in-memory computation through Georgia Tech’s Neurocube and Stanford’s Tetris accelerator using the Hybrid Memory Cube, as well as near-memory architecture through the embedded eDRAM of the Institute of Computing Technology, the Chinese Academy of Science, and other institutions. Readers will also find a discussion of 3D neural processing techniques to support multiple layer neural networks, as well as information like: A thorough introduction to neural networks and neural network development history, as well as Convolutional Neural Network (CNN) models Explorations of various parallel architectures, including the Intel CPU, Nvidia GPU, Google TPU, and Microsoft NPU, emphasizing hardware and software integration for performance improvement Discussions of streaming graph for massive parallel computation with the Blaize GSP and Graphcore IPU An examination of how to optimize convolution with UCLA Deep Convolutional Neural Network accelerator filter decomposition Perfect for hardware and software engineers and firmware developers, Artificial Intelligence Hardware Design is an indispensable resource for anyone working with Neural Processing Units in either a hardware or software capacity.

Data Analytics with Hadoop

Data Analytics with Hadoop
Author: Benjamin Bengfort
Publisher: "O'Reilly Media, Inc."
Total Pages: 288
Release: 2016-06
Genre: Computers
ISBN: 1491913762

Ready to use statistical and machine-learning techniques across large data sets? This practical guide shows you why the Hadoop ecosystem is perfect for the job. Instead of deployment, operations, or software development usually associated with distributed computing, you’ll focus on particular analyses you can build, the data warehousing techniques that Hadoop provides, and higher order data workflows this framework can produce. Data scientists and analysts will learn how to perform a wide range of techniques, from writing MapReduce and Spark applications with Python to using advanced modeling and data management with Spark MLlib, Hive, and HBase. You’ll also learn about the analytical processes and data systems available to build and empower data products that can handle—and actually require—huge amounts of data. Understand core concepts behind Hadoop and cluster computing Use design patterns and parallel analytical algorithms to create distributed data analysis jobs Learn about data management, mining, and warehousing in a distributed context using Apache Hive and HBase Use Sqoop and Apache Flume to ingest data from relational databases Program complex Hadoop and Spark applications with Apache Pig and Spark DataFrames Perform machine learning techniques such as classification, clustering, and collaborative filtering with Spark’s MLlib

Applied Reconfigurable Computing. Architectures, Tools, and Applications

Applied Reconfigurable Computing. Architectures, Tools, and Applications
Author: Francesca Palumbo
Publisher: Springer Nature
Total Pages: 380
Release: 2023-09-15
Genre: Computers
ISBN: 3031429214

This book constitutes the proceedings of the 19th International Symposium on Applied Reconfigurable Computing, ARC 2023, which was held in Cottbus, Germany, in September 2023. The 18 full papers presented in this volume were reviewed and selected from numerous submissions. The proceedings also contain 4 short PhD papers. The contributions were organized in topical sections as follows: Design methods and tools; applications; architectures; special session: near and in-memory computing; and PhD forum papers.

The Apache Ignite Book

The Apache Ignite Book
Author: Michael Zheludkov
Publisher: Lulu.com
Total Pages: 642
Release: 2019-02-25
Genre: Computers
ISBN: 0359439373

Apache Ignite is one of the most widely used open source memory-centric distributed, caching, and processing platform. This allows the users to use the platform as an in-memory computing framework or a full functional persistence data stores with SQL and ACID transaction support. On the other hand, Apache Ignite can be used for accelerating existing Relational and NoSQL databases, processing events & streaming data or developing Microservices in fault-tolerant fashion. This book addressed anyone interested in learning in-memory computing and distributed database. This book intends to provide someone with little to no experience of Apache Ignite with an opportunity to learn how to use this platform effectively from scratch taking a practical hands-on approach to learning. Please see the table of contents for more details.

In-Memory Computing Hardware Accelerators for Data-Intensive Applications

In-Memory Computing Hardware Accelerators for Data-Intensive Applications
Author: Baker Mohammad
Publisher: Springer Nature
Total Pages: 145
Release: 2023-10-27
Genre: Technology & Engineering
ISBN: 303134233X

This book describes the state-of-the-art of technology and research on In-Memory Computing Hardware Accelerators for Data-Intensive Applications. The authors discuss how processing-centric computing has become insufficient to meet target requirements and how Memory-centric computing may be better suited for the needs of current applications. This reveals for readers how current and emerging memory technologies are causing a shift in the computing paradigm. The authors do deep-dive discussions on volatile and non-volatile memory technologies, covering their basic memory cell structures, operations, different computational memory designs and the challenges associated with them. Specific case studies and potential applications are provided along with their current status and commercial availability in the market.

Computer Organization and Design RISC-V Edition

Computer Organization and Design RISC-V Edition
Author: David A. Patterson
Publisher: Morgan Kaufmann
Total Pages: 700
Release: 2017-05-12
Genre: Computers
ISBN: 0128122765

The new RISC-V Edition of Computer Organization and Design features the RISC-V open source instruction set architecture, the first open source architecture designed to be used in modern computing environments such as cloud computing, mobile devices, and other embedded systems. With the post-PC era now upon us, Computer Organization and Design moves forward to explore this generational change with examples, exercises, and material highlighting the emergence of mobile computing and the Cloud. Updated content featuring tablet computers, Cloud infrastructure, and the x86 (cloud computing) and ARM (mobile computing devices) architectures is included. An online companion Web site provides advanced content for further study, appendices, glossary, references, and recommended reading. - Features RISC-V, the first such architecture designed to be used in modern computing environments, such as cloud computing, mobile devices, and other embedded systems - Includes relevant examples, exercises, and material highlighting the emergence of mobile computing and the cloud

Computer Architecture

Computer Architecture
Author: John L. Hennessy
Publisher: Morgan Kaufmann
Total Pages: 939
Release: 2017-11-23
Genre: Computers
ISBN: 0128119063

Computer Architecture: A Quantitative Approach, Sixth Edition has been considered essential reading by instructors, students and practitioners of computer design for over 20 years. The sixth edition of this classic textbook from Hennessy and Patterson, winners of the 2017 ACM A.M. Turing Award recognizing contributions of lasting and major technical importance to the computing field, is fully revised with the latest developments in processor and system architecture. The text now features examples from the RISC-V (RISC Five) instruction set architecture, a modern RISC instruction set developed and designed to be a free and openly adoptable standard. It also includes a new chapter on domain-specific architectures and an updated chapter on warehouse-scale computing that features the first public information on Google's newest WSC. True to its original mission of demystifying computer architecture, this edition continues the longstanding tradition of focusing on areas where the most exciting computing innovation is happening, while always keeping an emphasis on good engineering design. - Winner of a 2019 Textbook Excellence Award (Texty) from the Textbook and Academic Authors Association - Includes a new chapter on domain-specific architectures, explaining how they are the only path forward for improved performance and energy efficiency given the end of Moore's Law and Dennard scaling - Features the first publication of several DSAs from industry - Features extensive updates to the chapter on warehouse-scale computing, with the first public information on the newest Google WSC - Offers updates to other chapters including new material dealing with the use of stacked DRAM; data on the performance of new NVIDIA Pascal GPU vs. new AVX-512 Intel Skylake CPU; and extensive additions to content covering multicore architecture and organization - Includes "Putting It All Together" sections near the end of every chapter, providing real-world technology examples that demonstrate the principles covered in each chapter - Includes review appendices in the printed text and additional reference appendices available online - Includes updated and improved case studies and exercises - ACM named John L. Hennessy and David A. Patterson, recipients of the 2017 ACM A.M. Turing Award for pioneering a systematic, quantitative approach to the design and evaluation of computer architectures with enduring impact on the microprocessor industry