Improving Biopharmaceutical Production Of Chinese Hamster Ovary Cells Using Targeted Genome Engineering Tools
Download Improving Biopharmaceutical Production Of Chinese Hamster Ovary Cells Using Targeted Genome Engineering Tools full books in PDF, epub, and Kindle. Read online free Improving Biopharmaceutical Production Of Chinese Hamster Ovary Cells Using Targeted Genome Engineering Tools ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Gyun Min Lee |
Publisher | : John Wiley & Sons |
Total Pages | : 436 |
Release | : 2020-01-13 |
Genre | : Science |
ISBN | : 3527343342 |
Offers a comprehensive overview of cell culture engineering, providing insight into cell engineering, systems biology approaches and processing technology In Cell Culture Engineering: Recombinant Protein Production, editors Gyun Min Lee and Helene Faustrup Kildegaard assemble top class authors to present expert coverage of topics such as: cell line development for therapeutic protein production; development of a transient gene expression upstream platform; and CHO synthetic biology. They provide readers with everything they need to know about enhancing product and bioprocess attributes using genome-scale models of CHO metabolism; omics data and mammalian systems biotechnology; perfusion culture; and much more. This all-new, up-to-date reference covers all of the important aspects of cell culture engineering, including cell engineering, system biology approaches, and processing technology. It describes the challenges in cell line development and cell engineering, e.g. via gene editing tools like CRISPR/Cas9 and with the aim to engineer glycosylation patterns. Furthermore, it gives an overview about synthetic biology approaches applied to cell culture engineering and elaborates the use of CHO cells as common cell line for protein production. In addition, the book discusses the most important aspects of production processes, including cell culture media, batch, fed-batch, and perfusion processes as well as process analytical technology, quality by design, and scale down models. -Covers key elements of cell culture engineering applied to the production of recombinant proteins for therapeutic use -Focuses on mammalian and animal cells to help highlight synthetic and systems biology approaches to cell culture engineering, exemplified by the widely used CHO cell line -Part of the renowned "Advanced Biotechnology" book series Cell Culture Engineering: Recombinant Protein Production will appeal to biotechnologists, bioengineers, life scientists, chemical engineers, and PhD students in the life sciences.
Author | : Mohamed Al-Rubeai |
Publisher | : Springer Science & Business Media |
Total Pages | : 259 |
Release | : 2009-08-11 |
Genre | : Medical |
ISBN | : 9048122457 |
Mammalian cell lines command an effective monopoly for the production of therapeutic proteins that require post-translational modifications. This unique advantage outweighs the costs associated with mammalian cell culture, which are far grater in terms of development time and manufacturing when compared to microbial culture. The development of cell lines has undergone several advances over the years, essentially to meet the requirement to cut the time and costs associated with using such a complex hosts as production platforms. This book provides a comprehensive guide to the methodology involved in the development of cell lines and the cell engineering approach that can be employed to enhance productivity, improve cell function, glycosylation and secretion and control apoptosis. It presents an overall picture of the current topics central to expression engineering including such topics as epigenetics and the use of technologies to overcome positional dependent inactivation, the use of promoter and enhancer sequences for expression of various transgenes, site directed engineering of defined chromosomal sites, and examination of the role of eukaryotic nucleus as the controller of expression of genes that are introduced for production of a desired product. It includes a review of selection methods for high producers and an application developed by a major biopharmaceutical industry to expedite the cell line development process. The potential of cell engineering approch to enhance cell lines through the manipulation of single genes that play important roles in key metabolic and regulatory pathways is also explored throughout.
Author | : Alexandra Castilho |
Publisher | : Humana |
Total Pages | : 0 |
Release | : 2015-06-17 |
Genre | : Science |
ISBN | : 9781493927593 |
Conceived with the intention of providing an array of strategies and technologies currently in use for glyco-engineering distinct living organisms, this book contains a wide range of methods being developed to control the composition of carbohydrates and the properties of proteins through manipulations on the production host rather than in the protein itself. The first five sections deal with host-specific glyco-engineering and contain chapters that provide protocols for modifications of the glycosylation pathway in bacteria, yeast, insect, plants and mammalian cells, while the last two sections explore alternative approaches to host glyco-engineering and selected protocols for the analysis of the N-glycans and glyco-profiling by mass spectrometry. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and tips on troubleshooting and avoiding known pitfalls. Authoritative and extensive, Glyco-Engineering: Methods and Protocols offers vast options to help researchers to choose the expression system and approach that best suits their intended protein research or applications.
Author | : Wei-Shu Hu |
Publisher | : Springer |
Total Pages | : 179 |
Release | : 2006-08-16 |
Genre | : Science |
ISBN | : 3540340076 |
Since the introduction of recombinant human growth hormone and insulin a quarter century ago, protein therapeutics has greatly broadened the ho- zon of health care. Many patients suffering with life-threatening diseases or chronic dysfunctions, which were medically untreatable not long ago, can attest to the wonder these drugs have achieved. Although the ?rst generation of p- tein therapeutics was produced in recombinant Escherichia coli, most recent products use mammalian cells as production hosts. Not long after the ?rst p- duction of recombinant proteins in E. coli, it was realized that the complex tasks of most post-translational modi?cations on proteins could only be ef?ciently carried out in mammalian cells. In the 1990s, we witnessed a rapid expansion of mammalian-cell-derived protein therapeutics, chie?y antibodies. In fact, it has been nearly a decade since the market value of mammalian-cell-derived protein therapeutics surpassed that of those produced from E. coli. A common characteristic of recent antibody products is the relatively large dose required for effective therapy, demanding larger quantities for the treatment of a given disease. This, coupled with the broadening repertoire of protein drugs, has rapidly expanded the quantity needed for clinical applications. The increasing demand for protein therapeutics has not been met exclusively by construction of new manufacturing plants and increasing total volume capacity. More - portantly the productivity of cell culture processes has been driven upward by an order of magnitude in the past decade.
Author | : William R Strohl |
Publisher | : Elsevier |
Total Pages | : 697 |
Release | : 2012-10-16 |
Genre | : Medical |
ISBN | : 1908818093 |
The field of antibody engineering has become a vital and integral part of making new, improved next generation therapeutic monoclonal antibodies, of which there are currently more than 300 in clinical trials across several therapeutic areas. Therapeutic antibody engineering examines all aspects of engineering monoclonal antibodies and analyses the effect that various genetic engineering approaches will have on future candidates. Chapters in the first part of the book provide an introduction to monoclonal antibodies, their discovery and development and the fundamental technologies used in their production. Following chapters cover a number of specific issues relating to different aspects of antibody engineering, including variable chain engineering, targets and mechanisms of action, classes of antibody and the use of antibody fragments, among many other topics. The last part of the book examines development issues, the interaction of human IgGs with non-human systems, and cell line development, before a conclusion looking at future issues affecting the field of therapeutic antibody engineering. - Goes beyond the standard engineering issues covered by most books and delves into structure-function relationships - Integration of knowledge across all areas of antibody engineering, development, and marketing - Discusses how current and future genetic engineering of cell lines will pave the way for much higher productivity
Author | : Weichang Zhou |
Publisher | : Springer |
Total Pages | : 262 |
Release | : 2014-01-15 |
Genre | : Science |
ISBN | : 3642540503 |
Volumes are organized topically and provide a comprehensive discussion of developments in the respective field over the past 3-5 years. The series also discusses new discoveries and applications. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. In general, special volumes are edited by well-known guest editors. The series editor and publisher will however always be pleased to receive suggestions and supplementary information. Manuscripts are accepted in English.
Author | : Arnold L. Demain |
Publisher | : |
Total Pages | : 854 |
Release | : 1999 |
Genre | : Medical |
ISBN | : |
The editors have enlisted a broad range of experts, including microbial ecologists, physiologists, geneticists, biochemists, molecular biologists, and biochemical engineers, who offer practical experience not found in texts and journals. This comprehensive perspective makes MIMB a valuable "how to" resource, the structure of which resembles the sequence of operation involved in the development of a commercial biological process and product.
Author | : Paula Meleady |
Publisher | : Springer Nature |
Total Pages | : 269 |
Release | : |
Genre | : |
ISBN | : 1071641042 |
Author | : Otto-Wilhelm Merten |
Publisher | : Springer Science & Business Media |
Total Pages | : 708 |
Release | : 2007-05-08 |
Genre | : Science |
ISBN | : 0306468603 |
Animal cell technology is becoming an increasingly important part of biotechnology and many products are now used in human health care and for veterinary applications. However, there are many times more products actually in the developmental pipelines of the biotechnology industry, including various phases of clinical trials. The Proceedings of the 15th Meeting of the European Society for Animal Cell Technology (Tours, France, September 1997) presents the actual current state as well as New Developments and Applications in Animal Cell Technology for the benefit of society. These Proceedings represent both the current state and applications of animal cell technology and the way the technology is expanding into new areas to give a unique insight into new products and applications for human and animal health care.
Author | : Paulina Balbas |
Publisher | : Springer Science & Business Media |
Total Pages | : 505 |
Release | : 2008-02-04 |
Genre | : Science |
ISBN | : 1592597742 |
Since newly created beings are often perceived as either wholly good or bad, the genetic alteration of living cells impacts directly on a symbolic meaning deeply imbedded in every culture. During the earlier years of gene expression research, te- nological applications were confined mainly to academic and industrial laboratories, and were perceived as highly beneficial since molecules that were previously unable to be separated or synthesized became accessible as therapeutic agents. Such were the success stories of hormones, antibodies, and vaccines produced in the bacterium Escherichia coli. Originally this bacterium gained fame among humans for being an unwanted host in the intestine, or worse yet, for being occasionally dangerous and pathogenic. H- ever, it was easily identified in contaminated waters during the 19th century, thus becoming a clear indicator of water pollution by human feces. Tamed, cultivated, and easily maintained in laboratories, its fast growth rate and metabolic capacity to adjust to changing environments fascinated the minds of scientists who studied and modeled such complex phenomena as growth, evolution, genetic exchange, infection, survival, adaptation, and further on—gene expression. Although at the lower end of the complexity scale, this microbe became a very successful model system and a key player in the fantastic revolution kindled by the birth of recombinant DNA technology.